We analyze the optical properties of one-dimensional (1D) PT-symmetric
structures of arbitrary complexity. These structures violate normal unitarity
(photon flux conservation) but are shown to satisfy generalized unitarity
relations, which relate the elements of the scattering matrix and lead to a
conservation relation in terms of the transmittance and (left and right)
reflectances. One implication of this relation is that there exist anisotropic
transmission resonances in PT-symmetric systems, frequencies at which there is
unit transmission and zero reflection, but only for waves incident from a
single side. The spatial profile of these transmission resonances is symmetric,
and they can occur even at PT-symmetry breaking points. The general
conservation relations can be utilized as an experimental signature of the
presence of PT-symmetry and of PT-symmetry breaking transitions. The uniqueness
of PT-symmetry breaking transitions of the scattering matrix is briefly
discussed by comparing to the corresponding non-Hermitian Hamiltonians.Comment: 10 pages, 10 figure