
ar
X

iv
:c

on
d-

m
at

/0
20

95
55

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

4 
Se

p 
20

02

CORRELATION PROPERTIES OF INTERFERING
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Interfering electrons in a mesoscopic ring are irradiated with both classical and
nonclassical microwaves. The average intensity of the charges is calculated as a
function of time and it is found that it depends on the nature of the irradiating
electromagnetic field. For various quantum states of the microwaves, the elec-
tron autocorrelation function is calculated and it shows that the quantum noise
of the external field affects the interference of the charges. Two-mode entangled
microwaves are also considered and the results for electron average intensity and
autocorrelation are compared with those of the corresponding separable state. In
both cases, the results depend on whether the ratio of the two frequencies is ratio-
nal or irrational.

1. Introduction

The Aharonov-Bohm effect [1] manifests itself as a nontrivial quantum

phase, whenever electric charges travel in a field-free region enclosing a

magnetostatic flux. This ‘geometrical phase’ has been generalized [2] and

the original results have found applications in various contexts, for example

in conductance oscillations in mesoscopic rings [3] and ‘which-path’ exper-

iments that use novel solid-state devices [4].

A recent development of these ideas has been to replace the magne-

tostatic flux by an electromagnetic field [5]. The objective here is very

different, since this ‘ac Aharonov-Bohm experiment’ constitutes a nonlin-

ear device where the interaction between the interfering electrons and the

photons leads to interesting nonlinear phenomena [6]. For an overview of

related studies on the interaction of mesoscopic devices with microwaves

we refer the reader to [7].

It is interesting to investigate the same phenomena with quantized elec-

tromagnetic fields. This ‘quantum ac Aharonov-Bohm experiment’ with

nonclassical microwaves, has been studied [5] and one can quantify how the
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quantum noise destroys slightly the electron interference [8]. The aim is to

investigate how various quantum phenomena and the quantum statistics of

the nonclassical microwaves link to corresponding quantum phenomena on

the electrons.

In what follows we study the interference of the electrons by calculating

their intensity, while they are being irradiated with classical or nonclassical

microwaves. The correlation properties of electron interference are then

studied by calculating the autocorrelation function of the electron intensity

(Sec. 2). We also consider two-mode microwaves with frequencies ω1 and

ω2 (Sec. 3). Two-mode microwaves can be factorizable, separable or en-

tangled [9] and since the problem of entanglement is generally complex, we

approached it using an example. In particular, we assumed that the two

modes of the microwave field form a Bell state and calculated its effect on

electron interference. We found that the result is very different from that of

the corresponding separable case. We conclude in Sec. 4 with a discussion

of our results.

2. One-mode microwaves

2.1. Classical microwaves

The following system is considered: a beam of electric charges splits into

two possible paths C0 and C1. The charges enter a region that is irradiated

with microwaves (using a suitable waveguide). The microwaves propagate

in the waveguide with the time-dependent magnetic field perpendicular to

the plane of the two paths and the electric field parallel to it. Let ψ0, ψ1

be the electron wavefunctions with total winding equal to 1, in the absence

of magnetic field. The effect of the electromagnetic field is the phase factor

exp[ieφ(t)] and the intensity is

I(t) = |ψ0+ψ1 exp[ieφ(t)]|2 = |ψ0|2+|ψ1|2+2|ψ0||ψ1|ℜ{exp[i(σ+eφ(t))]}(1)

where σ = arg(ψ1) − arg(ψ0). Units in which kB = ~ = c = 1 are used

throughout. For simplicity we consider the case of equal splitting, in which

|ψ0|2 = |ψ1|2 = 1/2 and let σ = 0. In this case we get

I(t) = 1 + cos[eφ(t)]. (2)

We calculate the autocorrelation function of the electron intensity:

Γ(τ) = lim
T→∞

1

2T

∫ T

−T

R(t, τ)dt; R(t, τ) ≡ I(t)I(t+ τ). (3)
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An expansion of Γ(τ) into a Fourier series gives the spectral density SK :

SK =
Ω

2π

∫ 2π/Ω

0

Γ(τ) exp(−iKΩτ)dτ

Γ(τ) =

∞
∑

K=−∞

SK exp(iKΩτ). (4)

Firstly, we consider the case where the classical time-dependent flux is

given by

φ(t) = φ1 sin(ωt) (5)

and using Eqs. (2) and (3) we find the autocorrelation function:

Γcl(τ) = [1 + J0(eφ1)]
2 + 2

∞
∑

K=1

[J2K(eφ1)]
2 cos(2Kωτ), (6)

where JK are Bessel functions. Comparison of Eqs. (4) and (6) shows that

Ω = 2ω and

S0 = [1 + J0(eφ1)]
2; SK = [J2K(eφ1)]

2. (7)

2.2. Nonclassical microwaves

A monochromatic electromagnetic field of frequency ω is considered, at

temperatures kBT << ~ω. We quantize the electromagnetic field by con-

sidering the vector potential Ai and the electric field Ei as dual quantum

variables. The loop C = C0 −C1 is small in comparison to the wavelength

of the microwaves, hence the Ai and the Ei can be integrated around it and

yield the magnetic flux φ and the electromotive force VEMF, respectively,

as dual quantum variables. The annihilation operator can be introduced

as a = 2−
1

2 ξ−1
(

φ+ iω−1VEMF

)

, and similarly the creation operator, where

ξ is a constant proportional to the area enclosed by C. The flux operator

is consequently written as φ(t) = exp(itH)φ(0) exp(−itH), where H is the

Hamiltonian that contains the ωa†a term and an interaction term. This

interaction term can be neglected for small currents.

Under these conditions the magnetic flux, which defines the phase factor,

becomes the operator φ̂(t) = (ξ/
√

2)
[

exp(iωt)a† + exp(−iωt)a
]

.Hence this

phase factor exp(ieφ) now is

exp
[

ieφ̂(t)
]

= D [iq exp(iωt)] , q =
ξe√
2

(8)

where D(λ) is the displacement operator D(λ) = exp(λa† − λ∗a). The

interference between the two electron beams is described by the intensity
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operator

Î(t) = 1 + cos
[

eφ̂(t)
]

= 1 +
1

2
D [iq exp(iωt)] +

1

2
D [−iq exp(iωt)] . (9)

Let ρ be the density matrix describing the external nonclassical microwaves.

The expectation value of the electron intensity is

〈I(t)〉 ≡ Tr
[

ρÎ(t)
]

= 1 +
1

2
W̃ (λ) +

1

2
W̃ (−λ); λ = iq exp(iωt), (10)

where Tr [ρD(λ)] ≡ W̃ (λ) is the Weyl (or characteristic) function which has

been studied by various authors including ourselves (e.g. [10] and references

therein).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

<
 I(

t)
 >

ω t

Cl Coh 

Th 

Sq 

Figure 1. 〈I(t)〉 as a function of ωt for ω = 10−4, 〈N〉 = 200, r = 6.4. We use units
where ~ = kB = c = 1. Continuous line represents the case of irradiation with classical
microwaves; line of circles, coherent states; line of crosses, squeezed states; and dotted
line, thermal states.

We have calculated 〈I(t)〉 for various quantum states of the microwaves

(using results for W̃ (λ) in Ref. [11]). In order to find the Γ(τ) from Eq.

(3), one needs to calculate the quantity

R(t, τ) ≡ Tr
[

ρÎ†(t)Î(t+ τ)
]

(11)

Numerical results are presented for different quantum states that we

calculated. In particular, we plot four cases: classical microwaves and
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Figure 2. γ(τ) as a function of ωτ for ω = 10−4, 〈N〉 = 200, r = 6.4. Part (a) shows the
real part of γ(τ); part (b) shows the imaginary part. We use units where ~ = kB = c = 1.

nonclassical microwaves in coherent, squeezed, and thermal states. For a

meaningful comparison, we consider the case where the average number of

photons 〈N〉 in coherent, squeezed, and thermal states is the same:

〈N〉 = |A|2 =
[

sinh
( r

2

)]2

+
[

cosh
(r

2

)

− sinh
(r

2

)]2

B2

=
1

exp(βω) − 1
. (12)

For the classical case we took φ2
1 = 2|A|2 = 2〈N〉. In all results of Figs. 1

to 3, ω = 10−4 (which in our units is eV ), 〈N〉 = 200, r = 6.4.

The results show that the quantum noise in the irradiating microwaves

affects the electron interference. All microwaves that we have considered

have the same average number of photons, but differ in the quantum

noise. These four types of microwaves lead to different electron interference

results and different autocorrelation functions. Irradiation of the electrons

by nonclassical microwaves leads to nonzero value of the imaginary part

of the electron autocorrelation function. This is not so (i.e. the imaginary

part of Γ(τ) vanishes) when the ring is irradiated with classical microwaves.
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Figure 3. SK coefficients for the electrons with 〈N〉 = 200, r = 6.4. We use units where
~ = kB = c = 1. The bars correspond to irradiation of the ring by (from left to right):
classical, coherent, squeezed, and thermal states.

3. Two-mode nonclassical microwaves

We consider two-mode nonclassical microwaves. We are particularly in-

terested to study how entangled two-mode microwaves affect the electron

interference. For this reason we consider a Bell state |s〉 = 2−1/2(|01〉+|10〉)
where |01〉 , |10〉 are two mode number eigenstates. For comparison we also

consider the separable (disentangled) state

ρsep =
1

2
(|01〉〈01|+ |10〉〈10|). (13)

Clearly, the density matrix of the entangled state ρent = |s〉〈s| can be

written as

ρent = ρsep +
1

2
(|01〉〈10| + |10〉〈01|). (14)

In this case the phase factor exp[ieφ(t)] becomes the product of two dis-

placement operators and, consequently, the intensity becomes

Î(t) = 1 +
1

2
D1(λ1)D2(λ2) +

1

2
D1(−λ1)D2(−λ2); λj = iq exp(iωjt)(15)

for two modes (j = 1, 2). Therefore, we find that

〈I(t)〉sep = 1 +
(

1 − q2
)

exp
(

−q2
)

, (16)

〈I(t)〉ent = 〈I(t)〉sep − q2 exp
(

−q2
)

cos[(ω1 − ω2)t]. (17)
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It is seen that for this example, the 〈I(t)〉sep is constant in time, while

the 〈I(t)〉ent is an oscillatory function of time. Clearly, different correlations

among the two irradiating modes of the microwaves may lead to different

average electron intensities.

4. Discussion

The subject of mesoscopic devices interacting with microwaves has received

attention in the last few years (e.g., Ref. [7]). Our contribution has been to

consider that these microwaves are prepared in various nonclassical states

[5,8,12]. Here we have quantified the effect of the quantum noise on elec-

tron interference. More specifically we have calculated both the electron

average intensity and the spectral density for several types of nonclassi-

cal microwaves and a comparison of the results with the case of classical

microwaves (Figs. 1-3), demonstrates clearly that the presence of both clas-

sical and quantum noise in the nonclassical microwaves affects the electron

intensity. What is more, when the ring is irradiated with two-mode mi-

crowaves, then entanglement among these two modes (i.e., the formation

of a Bell state) leads to a time-dependent expectation value of the electron

intensity.

References

1. M. Peshkin and A. Tonomura, The Aharonov-Bohm effect, Lecture notes in
Physics Vol. 340, Berlin: Springer (1989).

2. A. Shapere and F. Wilczek (ed), Geometric Phases in Physics, Singapore:
World Scientific (1989).

3. S. Washburn and R.A. Webb, Adv. Phys. 35, 375 (1986)
A.G. Aronov and Y.V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

4. G. Hackenbroich, Phys. Rep. 343, 464 (2001).
5. A. Vourdas, Phys. Rev. B54, 13175 (1996)

A. Vourdas and B.C. Sanders, Europhys. Lett. 43, 659 (1998).
6. M.P. Silverman, Nuovo Cimento B97, 200 (1987)

M. Buttiker, Phys. Rev. B46, 12485 (1992).
7. M. Buttiker, J. Low Temp. Phys. 118, 519 (2000)

R. Deblock et. al., Phys. Rev. B65, 075301 (2002).
8. P. Cedraschi, V.V. Ponomarenko, M. Buttiker, Phys. Rev. Lett. 84, 346 (2000)

A. Vourdas, Phys. Rev. A64, 053814 (2001).
9. R.F. Werner, Phys. Rev. A40, 4277 (1989); A. Peres, Phys. Rev. Lett. 77,

1413 (1996); R. Horodecki and M. Horodecki, Phys. Rev. A54, 1838 (1996);
V. Vedral et. al., Phys. Rev. Lett. 78, 2275 (1997).

10. S. Chountasis and A. Vourdas, Phys. Rev. A58, 848 (1998).
11. A. Vourdas, Phys. Rev. B49, 12040 (1994).
12. C.C. Chong, D.I. Tsomokos, A. Vourdas, Phys. Rev. A66, 33813 (2002).


