868 research outputs found

    Gain, impedance measurements and dielectric loading of ground penetrating radar (GPR) antennas using a watertank testing facility

    Get PDF
    The design and testing of suitable GPR antennas to be used in the field is both an arduous and challenging task. Presented here is a watertank testing facility incorporating a method of measuring gain and impedance of scaled-down models of prospective GPR antennas. A vertical ground plane is placed in a watertank measuring 1200mm×600mm×600mm. A monopole version of the test antenna is connected to a 150mm square plate which fits exactly into the ground plane. Underwater and air probes are placed in a semi-circular fashion on the vertical conducting ground plane around the square plate at radii of 150mm and 300mm respectively. Results are presented as gain and impedance plots for a monopole test antenna with two different water levels; Omm and 5mm below the base of the test antenna. Results for a salty solution and Isopropylalcohol dielectrically loaded, cavity backed, slot bowtie antenna are also given. The results show the sudden change in electrical length that occurs near a half-space surface, lateral wave phenomena as an air gap appears between the antenna's base and the water's surface as well as improved fractional bandwidth through dielectric loading

    An integrated circuit for chip-based analysis of enzyme kinetics and metabolite quantification

    Get PDF
    We have created a novel chip-based diagnostic tools based upon quantification of metabolites using enzymes specific for their chemical conversion. Using this device we show for the first time that a solid-state circuit can be used to measure enzyme kinetics and calculate the Michaelis-Menten constant. Substrate concentration dependency of enzyme reaction rates is central to this aim. Ion-sensitive field effect transistors (ISFET) are excellent transducers for biosensing applications that are reliant upon enzyme assays, especially since they can be fabricated using mainstream microelectronics technology to ensure low unit cost, mass-manufacture, scaling to make many sensors and straightforward miniaturisation for use in point-of-care devices. Here, we describe an integrated ISFET array comprising 216 sensors. The device was fabricated with a complementary metal oxide semiconductor (CMOS) process. Unlike traditional CMOS ISFET sensors that use the Si3N4 passivation of the foundry for ion detection, the device reported here was processed with a layer of Ta2O5 that increased the detection sensitivity to 45 mV/pH unit at the sensor readout. The drift was reduced to 0.8 mV/hour with a linear pH response between pH 2 – 12. A high-speed instrumentation system capable of acquiring nearly 500 fps was developed to stream out the data. The device was then used to measure glucose concentration through the activity of hexokinase in the range of 0.05 mM – 231 mM, encompassing glucose’s physiological range in blood. Localised and temporal enzyme kinetics of hexokinase was studied in detail. These results present a roadmap towards a viable personal metabolome machine

    A colorimetric CMOS-based platform for rapid total serum cholesterol quantification

    Get PDF
    Elevated cholesterol levels are associated with a greater risk of developing cardiovascular disease and other illnesses, making it a prime candidate for detection on a disposable biosensor for rapid point of care diagnostics. One of the methods to quantify cholesterol levels in human blood serum uses an optically mediated enzyme assay and a bench top spectrophotometer. The bulkiness and power hungry nature of the equipment limits its usage to laboratories. Here, we present a new disposable sensing platform that is based on a complementary metal oxide semiconductor process for total cholesterol quantification in pure blood serum. The platform that we implemented comprises readily mass-manufacturable components that exploit colorimetric changes of cholesterol oxidase and cholesterol esterase reactions. We have shown that our quantification results are comparable to that obtained by a bench top spectrophotometer. Using the implemented device, we have measured cholesterol concentration in human blood serum as low as 29 μM with a limit of detection at 13 μM, which is approximately 400 times lower than average physiological range, implying that our device also has the potential to be used for applications that require greater sensitivity

    Younger Age and Prognosis in Diverticulitis: A Nationwide Retrospective Cohort Study

    Get PDF
    BACKGROUND: Traditionally regarded as a disease of the elderly, the incidence of diverticulitis of the colon has been on the rise, especially in younger cohorts. These patients have been found to experience a more aggressive disease course with more frequent hospitalization and greater need for surgical intervention. OBJECTIVE: To characterize factors that portend a poor prognosis in patients diagnosed with diverticulitis; in particular, to evaluate the role of demographic variables on disease course. METHODS: Using the Canadian Institute for Health Information Discharge Abstract Databases, readmission rates, length of stay, colectomy rates and mortality rates in patients hospitalized for diverticulitis were examined. Data were stratified according to age, sex and comorbidity (as defined by the Charlson index). RESULTS: In the cohort ≤30 years of age, a clear male predominance was apparent. Colectomy rate in the index admission, stratified according to age, demonstrated a J-shaped curve, with the highest rate in patients ≤30 years of age (adjusted OR 2.3 [95% CI 1.62 to 3.27]) compared with the 31 to 40 years of age group. In-hospital mortality increased with age. Cumulative rates of readmission at six and 12 months were 6.8% and 8.8%, respectively. CONCLUSION: In the present nationwide cohort study, younger patients (specifically those ≤30 years of age) were at highest risk for colectomy during their index admission for diverticulitis. It is unclear whether this observation was due to more virulent disease among younger patients, or surgeon and patient preferences

    Rapid Screening of Calcium Carbonate Precipitation in the Presence of Amino Acids: Kinetics, Structure, and Composition

    Get PDF
    Soluble additives are widely used to control crystallization, leading to a definition of properties including size, morphology, polymorph, and composition. However, because of the number of potential variables in these experiments, it is typically extremely difficult to identify reaction conditions—as defined by solution compositions, temperatures, and combinations of additives—that give the desired product. This article introduces a high-throughput methodology which addresses this challenge and enables the streamlined preparation and characterization of crystalline materials. Using calcium carbonate precipitated in the presence of selected amino acids as a model system, we use well plates as microvolume crystallizers, and an accurate liquid-handling pipetting workstation for sample preparation. Following changes in the solution turbidity using a plate reader delivers information about the reaction kinetics, while semiautomated scanning electron microscopy, powder X-ray diffraction, and Raman microscopy provide structural information about the library of crystalline products. Of particular interest for the CaCO3 system is the development of fluorescence-based protocols which rapidly evaluate the amounts of the additives occluded within the crystals. Together, these methods provide a strategy for efficiently screening a broad reaction space, where this can both accelerate the ability to generate crystalline materials with target properties and develop our understanding of additive-directed crystallization

    Health-state utilities in a prisoner population : a cross-sectional survey

    Get PDF
    Background: Health-state utilities for prisoners have not been described. Methods: We used data from a 1996 cross-sectional survey of Australian prisoners (n = 734). Respondent-level SF-36 data was transformed into utility scores by both the SF-6D and Nichol's method. Socio-demographic and clinical predictors of SF-6D utility were assessed in univariate analyses and a multivariate general linear model. Results: The overall mean SF-6D utility was 0.725 (SD 0.119). When subdivided by various medical conditions, prisoner SF-6D utilities ranged from 0.620 for angina to 0.764 for those with none/mild depressive symptoms. Utilities derived by the Nichol's method were higher than SF-6D scores, often by more than 0.1. In multivariate analysis, significant independent predictors of worse utility included female gender, increasing age, increasing number of comorbidities and more severe depressive symptoms. Conclusion: The utilities presented may prove useful for future economic and decision models evaluating prison-based health programs

    Robust averaging protects decisions from noise in neural computations

    Get PDF
    An ideal observer will give equivalent weight to sources of information that are equally reliable. However, when averaging visual information, human observers tend to downweight or discount features that are relatively outlying or deviant (‘robust averaging’). Why humans adopt an integration policy that discards important decision information remains unknown. Here, observers were asked to judge the average tilt in a circular array of high-contrast gratings, relative to an orientation boundary defined by a central reference grating. Observers showed robust averaging of orientation, but the extent to which they did so was a positive predictor of their overall performance. Using computational simulations, we show that although robust averaging is suboptimal for a perfect integrator, it paradoxically enhances performance in the presence of “late” noise, i.e. which corrupts decisions during integration. In other words, robust decision strategies increase the brain’s resilience to noise arising in neural computations during decision-making

    Reduction of Endothelial Nitric Oxide Increases the Adhesiveness of Constitutive Endothelial Membrane ICAM-1 through Src-Mediated Phosphorylation

    Get PDF
    Nitric oxide (NO) is a known anti-adhesive molecule that prevents platelet aggregation and leukocyte adhesion to endothelial cells (ECs). The mechanism has been attributed to its role in the regulation of adhesion molecules on leukocytes and the adhesive properties of platelets. Our previous study conducted in rat venules found that reduction of EC basal NO synthesis caused EC ICAM-1-mediated firm adhesion of leukocytes within 10–30min. This quick response occurred in the absence of alterations of adhesion molecules on leukocytes and also opposes the classical pattern of ICAM-1-mediated leukocyte adhesion that requires protein synthesis and occurs hours after stimulation. The objective of this study is to investigate the underlying mechanisms of reduced basal NO-induced EC-mediated rapid leukocyte adhesion observed in intact microvessels. The relative levels of ICAM-1 at different cell regions and their activation status were determined with cellular fractionation and western blot using cultured human umbilical vein ECs. ICAM-1 adhesiveness was determined by immunoprecipitation in non-denatured proteins to assess the changes in ICAM-1 binding to its inhibitory antibody, mAb1A29, and antibody against total ICAM-1 with and without NO reduction. The adhesion strength of EC ICAM-1 was assessed by atomic force microscopy (AFM) on live cells. Results showed that reduction of EC basal NO caused by the application of caveolin-1 scaffolding domain (AP-CAV) or NOS inhibitor, L-NMMA, for 30 min significantly increased phosphorylated ICAM-1 and its binding to mAb1A29 in the absence of altered ICAM-1 expression and its distribution at subcellular regions. The Src inhibitor, PP1, inhibited NO reduction-induced increases in ICAM-1 phosphorylation and adhesive binding. AFM detected significant increases in the binding force between AP-CAV-treated ECs and mAb1A29-coated probes. These results demonstrated that reduced EC basal NO lead to a rapid increase in ICAM-1 adhesive binding via Src-mediated phosphorylation without de novo protein synthesis and translocation. This study suggests that a NO-dependent conformational change of constitutive EC membrane ICAM-1 might be the mechanism of rapid ICAM-1 dependent leukocyte adhesion observed in vivo. This new mechanistic insight provides a better understanding of EC/leukocyte interaction-mediated vascular inflammation under many disease conditions that encounter reduced basal NO in the circulation system
    corecore