12 research outputs found

    The interior spreading story of Labrador Sea Water

    Get PDF
    The unique convective anomalies of Labrador Sea Water (LSW) can be used as advective tracers when assessing equatorward spreading pathways and timescales of LSW. In this study, we explore advective pathways of two LSW classes formed in the 1990s and early 2000s, respectively, along constant neutral density planes. Hydrographic observations showcase the prevalence of both LSW classes within the Atlantic interior, supporting a recirculation feature that branches from the Deep Western Boundary Current (DWBC) at 36°N among other pathways. Spreading characteristics of both LSW classes from the Labrador Sea to the subtropics are reinforced through a spatial pattern analysis of salinity anomalies and geostrophic velocities along the characteristic neutral density planes of each respective LSW class. We observe both classes to advect out of the Labrador Sea to (i) the eastern subpolar region and down the eastern boundary towards the Atlantic interior, (ii) directly into the Atlantic interior likely from an injection by recirculations from the subpolar gyre and DWBC leakage, and (iii) equatorward along the western boundary via the DWBC. Findings highlight the abundance of LSW within the Atlantic interior, not just along the western boundary, suggesting that interior pathways play an influential role on the export of these subpolar climate signals

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Global Oceans

    No full text
    The Atlantic meridional overturning circulation (MOC) and heat transport (MHT) have been observed (Fig. 3.21) at several trans-basin and western boundary moored arrays (e.g., Frajka-Williams et al. 2019; Berx et al. 2021; Hummels et al. 2022), as well as by synthesizing in situ and satellite altimetry measurements at several latitudes (Hobbs and Willis 2012; Sanchez-Franks et al. 2021; Dong et al. 2021; Kersalé et al. 2021). Here we provide updates on the MOC and MHT estimates from the Rapid Climate Change/MOC and Heatflux Array/Western Boundary Time Series (RAPID-MOCHA-WBTS) moored array at 26.5°N and from the synthetic approach at 41°N and at several latitudes in the South Atlantic. While updates for the Overturning in the Subpolar North Atlantic Program and the South Atlantic MOC Basin-wide Array at 34.5°S are pending, we report on recent advances in observing the variability of flows comprising the lower limb of the North Atlantic MOC, including the Meridional Overturning Variability Experiment (MOVE, 16°N)

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Global urban environmental change drives adaptation in white clover

    No full text
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Global urban environmental change drives adaptation in white clover

    No full text
    corecore