1,318 research outputs found

    Supersymmetry Breaking and Moduli Stabilization with Anomalous U(1) Gauge Symmetry

    Get PDF
    We examine the effects of anomalous U(1)_A gauge symmetry on soft supersymmetry breaking terms while incorporating the stabilization of the modulus-axion multiplet responsible for the Green-Schwarz (GS) anomaly cancellation mechanism. In case of the KKLT stabilization of the GS modulus, soft terms are determined by the GS modulus mediation, the anomaly mediation and the U(1)_A mediation which are generically comparable to each other, thereby yielding the mirage mediation pattern of superparticle masses at low energy scale. Independently of the mechanism of moduli stabilization and supersymmetry breaking, the U(1)_A D-term potential can not be an uplifting potential for de Sitter vacuum when the gravitino mass is smaller than the Planck scale by many orders of magnitude. We also discuss some features of the supersymmetry breaking by red-shifted anti-brane which is a key element of the KKLT moduli stabilization.Comment: 32 pages; references are adde

    The Gaugino Code

    Get PDF
    Gauginos might play a crucial role in the search for supersymmetry at the Large Hadron Collider (LHC). Mass predictions for gauginos are rather robust and often related to the values of the gauge couplings. We analyse the ratios of gaugino masses in the LHC energy range for various schemes of supersymmetry breakdown and mediation. Three distinct mass patterns emerge.Comment: 42 pages, Latex; a discussion of deflected anomaly mediation added, references adde

    Carbon doping of superconducting magnesium diboride

    Full text link
    We present details of synthesis optimization and physical properties of nearly single phase carbon doped MgB2 with a nominal stoichiometry of Mg(B{0.8}C{0.2})2 synthesized from magnesium and boron carbide (B4C) as starting materials. The superconducting transition temperature is ~ 22 K (~ 17 K lower than in pure MgB2). The temperature dependence of the upper critical field is steeper than in pure MgB2 with Hc2(10K) ~ 9 T. Temperature dependent specific heat data taken in different applied magnetic fields suggest that the two-gap nature of superconductivity is still preserved for carbon doped MgB2 even with such a heavily suppressed transition temperature. In addition, the anisotropy ratio of the upper critical field for T/Tc ~ 2/3 is gamma ~ 2. This value is distinct from 1 (isotropic) and also distinct from 6 (the value found for pure MgB2).Comment: 11 pages, 13 figures, submitted to Physica

    Effect of pressure on the superconducting transition temperature of doped and neutron-damaged MgB2

    Full text link
    Measurements of the superconducting transition temperatures for Al-doped, C-doped and neutron-damaged-annealed MgB2 samples under pressure up to ~8 kbar are presented. The dT_c/dP values change systematically with the decrease of the ambient pressure T_c in a regular fashion. The evolution of the pressure derivatives can be understood assuming that the change in phonon spectrum is a dominant contribution to dT_c/dP

    On the pion electroproduction amplitude

    Full text link
    We analyze amplitudes for the pion electroproduction on proton derived from Lagrangians based on the local chiral SU(2) x SU(2) symmetries. We show that such amplitudes do contain information on the nucleon axial form factor F_A in both soft and hard pion regimes. This result invalidates recent Haberzettl's claim that the pion electroproduction at threshold cannot be used to extract any information regarding F_A.Comment: 14 pages, 6 figures, revised version, accepted for publication in Phys. Rev.

    Macroscopic anisotropy in superconductors with anisotropic gaps

    Full text link
    It is shown within the weak-coupling model that the macroscopic superconducting anisotropy for materials with the gap varying on the Fermi surface cannot be characterized by a single number, unlike the case of clean materials with isotropic gaps. For clean uniaxial materials, the anisotropy parameter γ(T)\gamma (T) defined as the ratio of London penetration depths, λc/λab\lambda_c/\lambda_{ab}, is evaluated for all TT's. Within the two-gap model of MgB2_2, γ(T)\gamma (T) is an increasing function of TT.Comment: 4 pages, 2 figure

    Optimization of entanglement witnesses

    Full text link
    An entanglement witness (EW) is an operator that allows to detect entangled states. We give necessary and sufficient conditions for such operators to be optimal, i.e. to detect entangled states in an optimal way. We show how to optimize general EW, and then we particularize our results to the non-decomposable ones; the latter are those that can detect positive partial transpose entangled states (PPTES). We also present a method to systematically construct and optimize this last class of operators based on the existence of ``edge'' PPTES, i.e. states that violate the range separability criterion [Phys. Lett. A{\bf 232}, 333 (1997)] in an extreme manner. This method also permits the systematic construction of non-decomposable positive maps (PM). Our results lead to a novel sufficient condition for entanglement in terms of non-decomposable EW and PM. Finally, we illustrate our results by constructing optimal EW acting on H=\C^2\otimes \C^4. The corresponding PM constitute the first examples of PM with minimal ``qubit'' domain, or - equivalently - minimal hermitian conjugate codomain.Comment: 18 pages, two figures, minor change

    Metastable Vacua in Flux Compactifications and Their Phenomenology

    Get PDF
    In the context of flux compactifications, metastable vacua with a small positive cosmological constant are obtained by combining a sector where supersymmetry is broken dynamically with the sector responsible for moduli stabilization, which is known as the F-uplifting. We analyze this procedure in a model-independent way and study phenomenological properties of the resulting vacua.Comment: 21 pages, 19 figures; v2: matches version published in JHE

    Generalised quantum weakest preconditions

    Full text link
    Generalisation of the quantum weakest precondition result of D'Hondt and Panangaden is presented. In particular the most general notion of quantum predicate as positive operator valued measure (POVM) is introduced. The previously known quantum weakest precondition result has been extended to cover the case of POVM playing the role of a quantum predicate. Additionally, our result is valid in infinite dimension case and also holds for a quantum programs defined as a positive but not necessary completely positive transformations of a quantum states.Comment: 7 pages, no figures, added references, changed conten

    A Detailed Monte-Carlo Simulation for the Belle TOF System

    Get PDF
    We have developed a detailed Monte Carlo simulation program for the Belle TOF system. Based on GEANT simulation, it takes account of all physics processes in the TOF scintillation counters and readout electronics. The simulation reproduces very well the performance of the Belle TOF system, including the dE/dx response, the time walk effect, the time resolution, and the hit efficiency due to beam background. In this report, we will describe the Belle TOF simulation program in detail.Comment: To be submitted to NI
    • …
    corecore