423 research outputs found

    Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics

    Full text link
    We map the ultrasonic (8 MHz) speed and attenuation of edible-grade gelatin in water, exploring the key dependencies on temperature, concentration and time. The ultrasonic signatures of the sol-gel transition, confirmed by rheological measurements, and incomplete gel formation at low concentrations, enable a phase diagram of the system to be constructed. Sensitivity is also demonstrated to the kinetics of gel formation and melting, and associated hysteresis effects upon cyclic temperature sweeps. Furthermore, simple acoustic models of the sol and gel state enable estimation of the speed of sound and compressibility of gelatin. Our results demonstrate the potential of ultrasonic measurements to characterise the structure and visco-elasticity of gelatin hydrogels.Comment: 15 pages, 8 figure

    Vortex dynamics in trapped Bose-Einstein condensate

    Full text link
    We perform numerical simulations of vortex motion in a trapped Bose-Einstein condensate by solving the two-dimensional Gross-Pitaevskii Equation in the presence of a simple phenomenological model of interaction between the condensate and the finite temperature thermal cloud. At zero temperature, the trajectories of a single, off - centred vortex precessing in the condensate, and of a vortex - antivortex pair orbiting within the trap, excite acoustic emission. At finite temperatures the vortices move to the edge of the condensate and vanish. By fitting the finite -temperature trajectories, we relate the phenomenological damping parameter to the friction coefficients α\alpha and α\alpha^{'}, which are used to describe the interaction between quantised vortices and the normal fluid in superfluid helium.Comment: 16 pages, 18 figures, published in JLT

    Signals for CP Violation in Split Supersymmetry

    Full text link
    Split supersymmetry is characterized by relatively light chargino and neutralino sector and very heavy sfermion sector. We study the consequence of CP violation in this scenario by evaluating two-loop contributions to electric dipole moments of fermions from Higgs-photon as well as WW-WW diagrams. These contributions add coherently and produce electron and neutron electric dipole moments close to present bounds. We then explore Higgs production at a photon-photon collider, and consider the feasibility of measuring CP violating hγγh\gamma\gamma coupling induced by chargino loops. Methods of enhancing the sensitivity are discussed. For lower chargino masses and lower Higgs boson masses, the effect of the CP violation can be observed with 90% confidence level significance.Comment: 14 pages, 4 figures; typos corrected, version submitted to PL

    B_c meson rare decays in the light-cone quark model

    Full text link
    We investigate the rare decays BcDs(1968)ˉB_c \rightarrow D_s(1968) \ell \bar{\ell} and BcDs(2317)ˉB_c\rightarrow D_s^*(2317) \ell \bar{\ell} in the framework of the light-cone quark model (LCQM). The transition form factors are calculated in the space-like region and then analytically continued to the time-like region via exponential parametrization. The branching ratios and longitudinal lepton polarization asymmetries (LPAs) for the two decays are given and compared with each other. The results are helpful to investigating the structure of BcB_c meson and to testing the unitarity of CKM quark mixing matrix. All these results can be tested in the future experiments at the LHC.Comment: 9 pages, 11 figures, version accepted for publication in EPJ

    Electroweak Phase Transitions in left-right symmetric models

    Get PDF
    We study the finite-temperature effective potential of minimal left-right symmetric models containing a bidoublet and two triplets in the scalar sector. We perform a numerical analysis of the parameter space compatible with the requirement that baryon asymmetry is not washed out by sphaleron processes after the electroweak phase transition. We find that the spectrum of scalar particles for these acceptable cases is consistent with present experimental bounds.Comment: 20 pages, 5 figures (included), some comments added, typos corrected and new references included. Final version to appear in PR

    Muon anomalous magnetic moment, lepton flavor violation, and flavor changing neutral current processes in SUSY GUT with right-handed neutrino

    Get PDF
    Motivated by the large mixing angle solutions for the atmospheric and solar neutrino anomalies, flavor changing neutral current processes and lepton flavor violating processes as well as the muon anomalous magnetic moment are analyzed in the framework of SU(5) SUSY GUT with right-handed neutrino. In order to explain realistic mass relations for quarks and leptons, we take into account effects of higher dimensional operators above the GUT scale. It is shown that the supersymmetric (SUSY) contributions to the CP violation parameter in K0Kˉ0K^0-\bar{K}^0 mixing, ϵK\epsilon_K, the μeγ\mu \to e \gamma branching ratio, and the muon anomalous magnetic moment become large in a wide range of parameter space. We also investigate correlations among these quantities. Within the current experimental bound of B(μeγ)\text{B}(\mu \to e \gamma), large SUSY contributions are possible either in the muon anomalous magnetic moment or in ϵK\epsilon_K. In the former case, the favorable value of the recent muon anomalous magnetic moment measurement at the BNL E821 experiment can be accommodated. In the latter case, the allowed region of the Kobayashi-Maskawa phase can be different from the prediction within the Standard Model (SM) and therefore the measurements of the CP asymmetry of BJ/ψKSB\to J/\psi K_S mode and ΔmBs\Delta m_{B_s} could discriminate this case from the SM. We also show that the τμγ\tau \to \mu \gamma branching ratio can be close to the current experimental upperbound and the mixing induced CP asymmetry of the radiative B decay can be enhanced in the case where the neutrino parameters correspond to the Mikheyev-Smirnov-Wolfenstein small mixing angle solution.Comment: 70 pages, 14 figure

    Lepton Dipole Moments and Rare Decays in the CP-violating MSSM with Nonuniversal Soft-Supersymmetry Breaking

    Full text link
    We investigate the muon anomalous magnetic dipole moment (MDM), the muon electric dipole moment (EDM) and the lepton-flavour-violating decays of the τ\tau-lepton, τμγ\tau \to \mu \gamma and τ3μ\tau\to 3\mu, in the CP-violating Minimal Supersymmetric Standard Model (MSSM) with nonuniversal soft-supersymmetry breaking. We evaluate numerically the muon EDM and the branching ratios B(τμγ)B(\tau \to \mu\gamma) and B(τ3μ)B(\tau \to 3\mu), after taking into account the experimental constraints from the electron EDM and muon MDM. Upon imposition of the experimental limits on our theoretical predictions for the aforementioned branching ratios and the muon MDM, we obtain an upper bound of about 1023ecm10^{-23} e\cdot cm on the muon EDM which lies well within the explorable reach of the proposed experiment at BNL.Comment: Latex, 26 pages, 8 figures, accepted for publication in Phys. Rev.

    Reconstructing Neutrino Properties from Collider Experiments in a Higgs Triplet Neutrino Mass Model

    Get PDF
    We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of the Higgs triplets develop small vacuum expectation values (VEVs) quadratic in the bilinear R-parity breaking parameters. In this scheme the atmospheric neutrino mass scale arises from bilinear R-parity breaking while for reasonable values of parameters the solar neutrino mass scale is generated from the small Higgs triplet VEVs. We calculate neutrino masses and mixing angles in this model and show how the model can be tested at future colliders. The branching ratios of the doubly charged triplet decays are related to the solar neutrino angle via a simple formula.Comment: 19 pages, 4 figures; one formula corrected, two author's names corrected; some explanatory comments adde

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems

    Modelling, Simulation and Fuzzy Self-Tuning Control of D-STATCOM in a Single Machine Infinite Bus Power System

    Get PDF
    © 2019 Bentham Science Publishers. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.2174/2352096511666180314141205In recent years, demand for electricity has increased considerably, while the expansion of generation and transmission has been very slow due to limited investment in resources and environmental restrictions. Methods: As a result, the power system becomes vulnerable to disturbances and instability. FACTS (Flexible AC Transmission Systems) technology has now been accepted as a potential solution to this problem. This paper deals with the modelling, simulation and fuzzy self-tuning control of a D-STATCOM to enhance the stability and improve the critical fault clearing time(CCT) in a single machine infinite bus (SMIB).A detailed modelling of the D-STATCOM and comprehensive derivation of the fuzzy logic self-tuning control is presented. Results: The dynamic performance of the power system with the proposed control scheme is validated through in a simulation study carried out under Matlab/Simulink and SimPowerSystems toolbox. Conclusion: The results demonstrate a significant enhancement of the power system stability under the simulated fault conditions considered.Peer reviewe
    corecore