156 research outputs found

    A Case of Abdominal Abscess in Crohn's Disease: Successful Endoscopic Demonstration of an Obscure Enteric Fistula by Dye Injection via a Percutaneous Drainage Catheter

    Get PDF
    Abdominal and pelvic abscesses occur in approximately 10–30% of Crohn's disease patients during the course of the disease; most of these abscesses have an enteric communication. For this condition, percutaneous abscess drainage (PAD) rather than emergency surgery has recently been recognized as a valuable procedure for initial treatment. However, in cases wherein the abscess is accompanied by an enteric fistula, the recurrence of abscess might be inevitable without the management of the enteric fistula. Therefore, demonstration and evaluation of the enteric fistula is essential to prevent abscess recurrence; however, this is not necessarily a simple procedure. Here, we report abdominal abscess accompanied by a rectal fistula in a patient with Crohn's disease; this condition was successfully treated by PAD. Furthermore, PAD was also useful in identifying the fistula by colonoscopy involving dye injection via the drainage catheter. To our knowledge, no previous literature has reported the use of dye injection via the drainage catheter for identifying a fistula during endoscopic examination. We present here the radiographic, sonographic, and endoscopic findings of this case

    Computerized pattern making focus on fitting to 3D human body shapes

    Get PDF
    Purpose - This paper aims to describe the development of a method of constructing three-dimensional (3D) human body shapes that include a degree of ease for purpose of computerized pattern making. Design/methodology/approach - The body shape could be made with ease allowance to an individual's unique body shape using sweep method and a convex method. And then generates tight skirt patterns for the reconstructed virtual body shape using a computerized pattern making system. Findings - This paper obtains individual patterns using individually reconstructed 3D body shapes by computerized pattern development. In these patterns, complex curved lines such as waist lines and dart lines are created automatically using the developed method. The method is successfully used to make variations of a tight skirt to fit different size women. The author also used the method to make other skirts of various designs. Originality/value - The method described in this paper is useful for making patterns and then garments, without the need for the garments to be later adjusted for the subject.ArticleInternational Journal of Clothing Science and Technology. 22(1):16-24 (2010)journal articl

    Isolation and Structural Determination of the First 8-epi-type Tetrodotoxin Analogs from the Newt, Cynops ensicauda popei, and Comparison of Tetrodotoxin Analogs Profiles of This Newt and the Puffer Fish, Fugu poecilonotus

    Get PDF
    Identification of new tetrodotoxin (TTX) analogs from TTX-possessing animals might provide insight into its biosynthesis and metabolism. In this study, four new analogs, 8-epi-5,6,11-trideoxyTTX, 4,9-anhydro-8-epi-5,6,11-trideoxyTTX, 1-hydroxy-8-epi-5,6,11-trideoxyTTX, and 1-hydroxy-4,4a-anhydro-8-epi-5,6,11-trideoxyTTX, were isolated from the newt, Cynops ensicauda popei, and their structures were determined using spectroscopic methods. These are the first 8-epi-type analogs of TTX that have been found in a natural source. Furthermore, we examined the composition of the TTX analogs in this newt and in the ovary of the puffer fish, Fugu poecilonotus, using LC/MS. The results indicate that TTX and 11-deoxyTTX were present in both sources. However, 6-epiTTX and 8-epi-type analogs were detected only in the newt, while 5,6,11-trideoxyTTX was a specific and major analog in the puffer fish. Such considerable differences among analog compositions might reflect differences in the biosynthesis or metabolism of TTX between these animals

    Precessing jet nozzle connecting to a spinning black hole in M87

    Full text link
    The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from General Relativity. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an eight to ten-year quasi-periodicity. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years in the position angle variation of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.Comment: 41 pages, 7 figures, 7 table

    Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009–2017 to be consistent with a persistent asymmetric ring of ~40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin
    corecore