548 research outputs found

    Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region

    Full text link
    Electroweak radiative corrections give rise to large negative, double-logarithmically enhanced corrections in the TeV region. These are partly compensated by real radiation and, moreover, affected by selecting isospin-noninvariant external states. We investigate the impact of real gauge boson radiation more quantitatively by considering different restricted final state configurations. We consider successively a massive abelian gauge theory, a spontaneously broken SU(2) theory and the electroweak Standard Model. We find that details of the choice of the phase space cuts, in particular whether a fraction of collinear and soft radiation is included, have a strong impact on the relative amount of real and virtual corrections.Comment: 20 pages, 4 figure

    Prognostic significance of nm23-H1 expression in oral squamous cell carcinoma

    Get PDF
    Recent studies indicated nm23-H1 played a role in cancer progression. Therefore, we investigated clinical significance of nm23-H1 expression in oral squamous cell carcinoma (OSCC). In total, 86 OSCC specimens were immunohistochemically stained with nm23-H1-specific monoclonal antibodies. Immunohistochemical staining of nm23-H1 was confirmed by immunoblotting. The relations between nm23-H1 expression and clinicopathologic variables were evaluated by chi(2) analysis. As increased size of primary tumour could escalate metastatic potential and the data of patients at the late T stage might confound statistical analyses, we thus paid special attention to 54 patients at the early T stage of OSCC. Statistical difference of survival was compared by a log-rank test. Immunohistochemically, nm23-H1 expression was detected in 48.8% (42 out of 86) of tumorous specimens. It positively correlated with larger primary tumour size (P = 0.03) and inversely with cigarette-smoking habit (P = 0.042). In patients at the early T stage, decreased nm23 expression was associated with increased incidence of lymph node metastasis (P = 0.004) and indicated poor survival (P = 0.014). Tumour nm23-H1 expression is a prognostic factor for predicting better survival in OSCC patients at the early T stage, which may reflect antimetastatic potential of nm23. Therefore, modulation of nm23-H1 expression in cancer cells can provide a novel possibility of improving therapeutic strategy at this stage. In addition, our results further indicated cigarette smoking could aggravate the extent of nm23-H1 expression and possibly disease progression of OSCC patients. (C) 2004 Cancer Research UK

    Effect of Sun and Planet-Bound Dark Matter on Planet and Satellite Dynamics in the Solar System

    Full text link
    We apply our recent results on orbital dynamics around a mass-varying central body to the phenomenon of accretion of Dark Matter-assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. We inspect its consequences on the orbits of the planets and their satellites over timescales of the order of the age of the solar system. It turns out that a solar Dark Matter accretion rate of \approx 10^-12 yr^-1, inferred from the upper limit \Delta M/M= 0.02-0.05 on the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr, would have displaced the planets faraway by about 10^-2-10^1 au 4.5 Gyr ago. Another consequence is that the semimajor axis of the Earth's orbit, approximately equal to the Astronomical Unit, would undergo a secular increase of 0.02-0.05 m yr^-1, in agreement with the latest observational determinations of the Astronomical Unit secular increase of 0.07 +/- 0.02 m yr^-1 and 0.05 m yr^-1. By assuming that the Sun will continue to accrete Dark Matter in the next billions year at the same rate as in the past, the orbits of its planets will shrink by about 10^-1-10^1 au (\approx 0.2-0.5 au for the Earth), with consequences for their fate, especially of the inner planets. On the other hand, lunar and planetary ephemerides set upper bounds on the secular variation of the Sun's gravitational parameter GM which are one one order of magnitude smaller than 10^-12 yr^-1. Dark Matter accretion on planets has, instead, less relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits would have been just 10^-2-10^1 km wider than now. (Abridged)Comment: LaTex2e, 17 pages, no figures, 7 tables, 61 references. Small problem with a reference fixed. To appear in Journal of Cosmology and Astroparticle Physics (JCAP

    Longitudinal broadening of near side jets due to parton cascade

    Full text link
    Longitudinal broadening along Δη\Delta\eta direction on near side in two-dimensional (Δϕ×Δη\Delta\phi \times \Delta\eta) di-hadron correlation distribution has been studied for central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV, within a dynamical multi-phase transport model. It was found that the longitudinal broadening is generated by a longitudinal flow induced by strong parton cascade in central Au+Au collisions, in comparison with p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The longitudinal broadening may shed light on the information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.

    Manipulation of electronic structure via supporting ligands: a charge disproportionate model within the linear metal framework of asymmetric nickel string Ni-7(phdptrany)(4)Cl (PF6)

    Get PDF
    This paper describes the synthesis and physical properties of an uniquely asymmetric heptanickel string complex exhibiting a charge disproportionate model along the linear nickel framework

    Determining the upper limit of Gamma_{ee} for the Y(4260)

    Full text link
    By fitting the R values between 3.7 and 5.0 GeV measured by the BES collaboration, the upper limit of the electron width of the newly discovered resonance Y(4260) is determined to be 580 eV at 90% C.L. Together with the BABAR measurement on the product of Gamma_{ee} and BR(Y(4260) --> pi+pi- J/psi), this implies a large decay width of Y(4260) --> pi+pi- J/psi final states.Comment: 8 pages, 4 figure

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure
    corecore