2,885 research outputs found

    Tunable Versatile High Input Impedance Voltage-Mode Universal Biquadratic Filter Based on DDCCs

    Get PDF
    A high input impedance voltage-mode universal biquadratic filter with three input terminals and seven output terminals is presented. The proposed circuit uses three differential difference current conveyors (DDCCs), four resistors and two grounded capacitors. The proposed circuit can realize all the standard filter functions, namely, lowpass, bandpass, highpass, notch and allpass, simultaneously. The proposed circuit offers the features of high input impedance, using only grounded capacitors, and orthogonal controllability of resonance angular frequency and quality factor

    The relationship between velocity utilization rate and pole vault performance

    Get PDF
    In the pole vault event, the velocity of approach is a highly vital factor. As velocity of approach improvements highly impact performance improvements. This study analysed the relationships between sprint running’s speed (SR), pole running (PR, without jump), and the pole vault approach (PVA, with real jump). Analysed too were the relationships between both the approach and performance’s respective running distance, velocity, and velocity utilization rates. Methods: Ten male pole vaulters were recruited. Measured was each 5-meter segment’s average velocity of his respective SR, PR, and PVA, along with the distance to maximum velocity. Results: The maximum average velocity of the PR’s 5m segments altogether was significantly positively correlated with pole vault (PV) performance; The maximum average velocity of the PR’s 5m segments altogether was significantly positively correlated with the last 5m PVA average velocity; The PVA velocity’s utilization rate was significantly negatively correlated with the difference between the distance to the PR’s maximum velocity and the PVA’s distance. Conclusion: The PR segment’s maximum speed capability can evaluate both a pole vaulter’s potential and pole vault-specific abilities. This study’s recruited pole vaulters’ respective approach distances were generally insufficient that resulted in a lower velocity utilization rate. Suggested is that in training, the pole vaulter could first find the distance required to reach the highest velocity upon starting from the PR test. Thus, this subsequently known distance could be applied in tandem with the pole vault’s approach to both improve the PVA’s utilization rate and reach the individual highest speed level

    CADSim: Robust and Scalable in-the-wild 3D Reconstruction for Controllable Sensor Simulation

    Full text link
    Realistic simulation is key to enabling safe and scalable development of % self-driving vehicles. A core component is simulating the sensors so that the entire autonomy system can be tested in simulation. Sensor simulation involves modeling traffic participants, such as vehicles, with high quality appearance and articulated geometry, and rendering them in real time. The self-driving industry has typically employed artists to build these assets. However, this is expensive, slow, and may not reflect reality. Instead, reconstructing assets automatically from sensor data collected in the wild would provide a better path to generating a diverse and large set with good real-world coverage. Nevertheless, current reconstruction approaches struggle on in-the-wild sensor data, due to its sparsity and noise. To tackle these issues, we present CADSim, which combines part-aware object-class priors via a small set of CAD models with differentiable rendering to automatically reconstruct vehicle geometry, including articulated wheels, with high-quality appearance. Our experiments show our method recovers more accurate shapes from sparse data compared to existing approaches. Importantly, it also trains and renders efficiently. We demonstrate our reconstructed vehicles in several applications, including accurate testing of autonomy perception systems.Comment: CoRL 2022. Project page: https://waabi.ai/cadsim

    Increased plasmin-mediated proteolysis of L1CAM in a mouse model of idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone

    RhoGDIβ-induced hypertrophic growth in H9c2 cells is negatively regulated by ZAK

    Get PDF
    We found that overexpression of RhoGDIβ, a Rho GDP dissociation inhibitor, induced hypertrophic growth and suppressed cell cycle progression in a cultured cardiomyoblast cell line. Knockdown of RhoGDIβ expression by RNA interference blocked hypertrophic growth. We further demonstrated that RhoGDIβ physically interacts with ZAK and is phosphorylated by ZAK in vitro, and this phosphorylation negatively regulates RhoGDIβ functions. Moreover, the ZAK-RhoGDIβ interaction may maintain ZAK in an inactive hypophosphorylated form. These two proteins could negatively regulate one another such that ZAK suppresses RhoGDIβ functions through phosphorylation and RhoGDIβ counteracts the effects of ZAK by physical interaction. Knockdown of ZAK expression in ZAK- and RhoGDIβ-expressing cells by ZAK-specific RNA interference restored the full functions of RhoGDIβ

    Mixed tensor susceptibility of the QCD vacuum from effective quark-quark interactions

    Get PDF
    We calculate the mixed tensor susceptibility of QCD vacuum in the framework of the global color symmetry model. In our calculation, the functional integration over gluon fields can be performed and the gluonic vacuum observable can be expressed in terms of the quark operators and the gluon propagator. The mixed tensor susceptibility was obtained with the subtraction of the perturbative contribution which is evaluated by the Wigner solution of the quark gap equation. Using several different effective quark-quark interaction models, we find the values of the mixed tensor susceptibility are very small.Comment: 12 page
    • …
    corecore