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Abstract

We calculate the mixed tensor susceptibility of QCD vacuum in the framework of the global color symmetry model
calculation, the functional integration over gluon fields can be performed and the gluonic vacuum observable can be ex
terms of the quark operators and the effective gluon correlator. The mixed tensor susceptibility was obtained with the su
of the perturbative contribution which is evaluated by the Wigner solution of the quark gap equation. Using several
effective quark–quark interaction models, we find the values of the mixed tensor susceptibility are very small.
 2005 Elsevier B.V.
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1. Introduction

In SVZ sum rules, in order to determine the static properties of hadrons it was suggested to consider tw
correlator functions of quark currents in the presence of an external constant classical field, where nonper
effects are taken into account in the so-called vacuum susceptibilities[1]. These induced condensates play imp
tant roles in determination of the hadron properties such as the nucleon magnetic moments[1], the isovector axia
coupling constant[2–4], the isoscalar axial coupling constant[4], the pion–nucleon coupling constant[5] and the
nucleon tensor charge[6,7] within this version of SVZ sum rules. In the literature, there are always two kind
vacuum susceptibility that appear in the conventional two-point treatment of an external current field: on
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induced quark condensate and the other is the induced mixed quark–gluon condensate. For convenience
to the former as the quark condensate susceptibility and the later as mixed condensate susceptibility in th

The vacuum tensor susceptibilities are relevant for the determination of nucleon tensor charge[6,7]. The value
of nucleon charge is related to the first moment of the transversity distributionh1(x), whereh1(x) is an additional
twist-two chirality violating structure function which can be measured in the Drell–Yan process with both bea
target transversely polarized. The previous evaluation of the quark condensate tensor susceptibility were p
in the framework of QCD sum rules[6–9], the chiral constituent model[10] and global color symmetry mode
(GCM) [11], respectively. Actually, there still exist uncertainty about this induced susceptibility since dif
theoretical treatments can give very different results, which should be checked by the future measureme
transversity distributionh1(x). Another tensor susceptibility, the mixed condensate tensor susceptibility wa
evaluated roughly in[6] within the two-point function of QCD sum rules.

GCM is a quark–gluon quantum field theory that very successfully models QCD for low energy ha
processes[14–18]. In the framework of this truncated DSE model, the determination of the dimension 5 m
quark–gluon condensate of QCD vacuum had been performed in[12] and the authors[13] had explored the ther
mal properties of this mixed condensate at finite temperature and chemical potential. In this Letter, a m
evaluate the mixed vacuum tensor susceptibility is proposed within the GCM formalism and the numerica
for the mixed tensor susceptibility are given.

2. Formalism

In a Euclidean space formulation, with{γµ, γν} = 2δµν andγ +
µ = γν , the inverse of the dressed quark propaga

at the chiral limit has the decomposition

(1)G−1(p) = iγ · p + Σ(p) = iγ · pA
(
p2) + B

(
p2),

whereΣ(p) stands for the dressing self-energy of quarks. Within the GCM formalism, the quark self-ene
determined by the rainbow-ladder truncated quark DSE

(2)Σ(p) = 4

3

∫
d4q

(2π)4
g2Dµν(p − q)γµG(q)γν,

whereg2Dµν(p − q) is the effective gluon two-point function. It is important to appreciate that while the G
has a formal global color symmetry, the detailed dynamical consequences of the local color symmetry of Q
modelled by the particular form ofg2D(s). There is an infrared saturation effect which, in conjunction with
dynamical chiral symmetry breaking, appears to suppress details of the formal color gauge symmetry of QC[17].
In the previous studies, various model forms forg2D(s) [16–18]had been used for a variety of hadronic proces
in the rainbow truncated DSE formalism. The phenomenon of the saturation effect is revealed by the fact
forms of the solutionsA(s) andB(s) at smalls are insensitive to the detailed infrared form ofg2D(s) characterized
by its large value at smalls.

We will calculate the induced QCD vacuum condensates from the saddle-point expansion, that is, we w
at the mean field level. This is consistent with the largeNc limit in the quark fields for a given model gluo
two-point function. For simplicity, the Feynman-like gaugeg2Dµν(x − y) = δµνg

2D(x − y) was adopted in ou
calculation and Eq.(2) takes the form

(3)
[
A

(
p2) − 1

]
p2 = 8

3

∫
d4q

(2π)4
g2D(p − q)

A(q2)p · q
q2A2(q2) + B2(q2)

,

(4)B
(
p2) = 16

3

∫
d4q

(2π)4
g2D(p − q)

B(q2)

q2A2(q2) + B2(q2)
.
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In the chiral limit, there are two qualitatively distinct solutions in Eqs.(3) and (4). The “Nambu–Goldstone
solution characterized byB(p2) �= 0 describes a phase: (1) chiral symmetry is dynamically broken for it prov
a momentum dependent constituent quark massM(p2) = B(p2)/A(p2); and (2) the dressed quarks are confin
for the dressed quark propagator does not have a Lehmann representation[18]. The alternative “Wigner” solution
characterized byB(p2) ≡ 0 describes a phase with neither dynamical chiral symmetry breaking nor confinem
this Letter, we refer to the quark propagator in terms of the trivial solution of the gap equation as the “pertur
quark propagatorGper(p2) with only the vector part

(5)
[
A′(p2) − 1

]
p2 = 8

3

∫
d4q

(2π)4
g2D(p − q)

p · q
q2A′(q2)

.

This “perturbative” quark propagator can be seen as the expectation value of the operatorT [qi(x)q̄j (y)] over the
perturbative vacuum|P 〉 at the mean field level in the framework of GCM.

From the GCM generating functional, it is now straightforward to calculate the vacuum expectation value
of any quark operator of the form

(6)On ≡ (
q̄j1Λ

(1)
j1i1

qi1

)(
q̄j2Λ

(2)
j2i2

qi2

) · · · (q̄jnΛ
(n)
jnin

qin

)
,

in the mean field vacuum. Here theΛ(i) stands for an operator in Dirac, flavor, and color space. The VEV o
operatorOn take the form[23]

(7)〈On〉 = (−1)n
∑
p

(−)p
[
Λ

(1)
j1i1

· · ·Λ(n)
jnin

Gi1jp(1)
· · ·Ginjp(n)

]
,

wherep stands for a permutation of then indices. Once the dressing quark propagatorG(q2) is determined, one
can calculate the two quark condensate〈q̄q〉, the four quark condensate〈q̄Λ(1)qq̄Λ(2)q〉, etc., in the mean field
level. Since the functional integration over the gluon fieldAa

µ is quadratic in the framework of GCM, one ca
perform the integration over gluon field analytically. Using the same shorthand notation for the typical Ga
integrations as in Ref.[12], we have∫

DAe− 1
2AD−1A+jA = e

1
2jDj ,

∫
DAAe− 1

2AD−1A+jA = (jD)e
1
2jDj ,

(8)
∫

DAA2e− 1
2AD−1A+jA = [

D + (jD)2]e 1
2jDj ,

whereD is the dressing gluon propagator andja
µ is the quark color current. Because the gluon vacuum averag

be replaced by a quark color currentq̄γµ
λa

C

2 q together with the gluon two-point functionD, one can perform the
integration over the quark operators in the mean field vacuum as described above. In this way, one can in
obtain the vacuum expectation of value for any gluonic fields. This technique provides an feasible way to e
the expectation value of the operators with low-dimensional gluon fields such as the mixed quark–gluon con
g〈q̄Gµνσ

µνq〉 in GCM (note that for the VEV of operators with high powers of gluonic fields, this procedure
get rather complex).

3. Mixed tensor susceptibility

With above preparation, the mixed tensor susceptibility can be calculated in the mean field level within th
model. The induced tensor susceptibilitiesχ , κ andζ are defined through

(9)〈V |q̄σµνq|V 〉Z = gqχZµν〈q̄q〉,
(10)〈V |q̄g

λa

Ga q|V 〉 = g κZ 〈q̄q〉,
c
2 µν Z q µν
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(11)〈V |q̄gcγ5G̃µνq|V 〉Z = −igqζZµν〈q̄q〉,
whereZµν stands for the external field,〈V | · · · |V 〉Z denotes the VEV over the QCD vacuum at the presence o
external fieldZµν andG̃µν = 1

2
λa

2 εµναβGαβa . The nonzero VEVs of the operators above are due to the break
of Lorentz invariance in the presence of external constant fieldZµν . From the QCD partition function for quark
in Euclidean space in the presence of the external field, the formulae for evaluating these susceptibilities
form

(12)χ〈q̄q〉 = 1

6

∫
d4x 〈V |T [

q̄(x)σµνq(x), q̄σµνq
]|V 〉 = 1

6
Πχ(0),

(13)κ〈q̄q〉 = 1

6

∫
d4x 〈V |T

[
q̄(x)gc

λa

2
Ga

µνq(x), q̄σµνq

]
|V 〉 = 1

6
Πκ(0),

according to Refs.[6,7]. Due to the fact that the vacuum susceptibilities reflect the nonperturbative structure
QCD vacuum,Πχ(0) andΠκ(0) on the right-hand side of Eqs.(12) and (13)should be subtracted by the corr
sponding perturbative contribution terms. Within the DSE formalism, the perturbative contribution toΠχ(0) and
Πκ(0) can be evaluated by the trivial quark propagator, namely the “perturbative” quark propagator in term
trivial Wigner solution to the dressed quark gap equations(3) and(4). This is a reasonable procedure because
Wigner solution of the dressed quark propagator describes a phase with neither DCSB nor confinemen
difference between the Nambu solution and the Wigner solution vanishes at short distance according to n
studies. In fact, the Wigner solution has been used extensively to play the role of the perturbative dress
propagator in the study of thermal properties of QCD within the DSE formalism[18], where the bag constan
was defined as the difference of the pressure between the true QCD vacuum and the perturbative QCD
which were evaluated by the Nambu–Goldstone solution and the Wigner solution to the quark propagator
tively [19].

Therefore, we rewrite the Eqs.(12) and (13)as

χ〈q̄q〉 = 1

6

∫
d4x 〈V |T [

q̄(x)σµνq(x), q̄σµνq
]|V 〉N − 1

6

∫
d4x 〈P |T [

q̄(x)σµνq(x), q̄σµνq
]|P 〉W

(14)= 1

6
Πnp

χ (0),

κ〈q̄q〉 = 1

6

∫
d4x 〈V |T

[
q̄(x)gc

λa

2
Ga

µνq(x), q̄σµνq

]
|V 〉N

(15)− 1

6

∫
d4x 〈P |T

[
q̄(x)gc

λa

2
Ga

µνq(x), q̄σµνq

]
|P 〉W = 1

6
Πnp

κ (0).

By substituting the “perturbative” quark propagatorGper(p2) to Eq.(7), the determination of the expectation val
of the T-product operators in terms of quark fields over the perturbative vacuum state|P 〉 can be performed self
consistently within the GCM formalism. It should be noted that the evaluation ofχ〈ḡg〉 in Ref. [11] is consistent
with Eq. (14) because in this special case the subtraction terms to Eq.(14) has zero contribution toχ〈ḡg〉 due to
B ′(p2) ≡ 0.

Using Eq.(8), the expression for VEV of above T-product operator including gluonic fields is converted
VEV for the product with the form of(6) in terms of six quark fields and eight quark fields. According to Eq.(7),
we have

1

6

∫
d4x 〈V |T

[
q̄(x)gc

λa

2
Ga

µνq(x), q̄σµνq

]
|V 〉N

= −4

3
i

∫
dx4

∫
dz4 g2[∂x

µD(z − x)
]{

trD
[
G(x − z)γvG(z − 0)σµνG(0− x)

]
+ tr

[
G(x − 0)σ G(0− z)γ G(z − x)

]}

D µν v
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i-
− 2i

∫
dx4

∫
dz4

1

∫
dz4

2 g2D(z1 − x)g2D(z2 − x)

× {
trD

[
G(x − z1)γµG(z1 − z2)γνG(z2 − 0)σµνG(0− x)

]
+ trD

[
G(x − z1)γµG(z1 − 0)σµνG(0− z2)γνG(z2 − x)

]
(16)+ trD

[
G(x − 0)σµνG(0− z1)γµG(z1 − z2)γνG(z2 − x)

]}
.

SubstitutingGper(x−y) for G(x−y), the similar expression for the VEV of the same operator over the perturb
vacuum can be obtained. After Fourier transformation, we find that the first part of right-hand side of(16) is zero
and the final result for the mixed tensor susceptibility in the momentum space takes the form

κ〈q̄q〉 = 1

16π2

∫
ds s

[
B(s)

Z(s)

]2[27

8
B2(s) + 27

2
sA(s)

(
2− A(s)

)]

− 9

32π5

∫
ds dt

1∫
−1

dx st
√

1− x2g2D
(
s, t,

√
stx

)
Z−2(s)Z−1(t)B(s)

× {
B(s)B2(t) + B(t)A(s)A(t)

√
stx − [

A(s) − 1
][

2A(s)B(t)
√

stx − A(t)B(s)
]}

+ 3

32π5

∫
ds dt

1∫
−1

dx st
√

1− x2g2D
(
s, t,

√
stx

)

× (Z′)−2(s)Z′−1(t)A′2(s)A′(t)
[
A′(t) − 1

][
st − 4stx2]

− 3

32π5

∫
ds dt

1∫
−1

dx st
√

1− x2g2D
(
s, t,

√
stx

)

(17)× Z−2(s)Z−1(t)A2(s)A(t)
[
A(t) − 1

][
st − 4stx2],

whereZ(s) = sA2(s) + B(s) andZ′(s) = sA′2(s).
It should be noted that to get this expression the Dyson–Schwinger equation(2) has been used again. The UV d

vergence of Eq.(16)can be illustrated by a simple analytical confining modelg2D(p − q) = 3
16(2π)4η2δ4(p − q),

which was proposed by Munczek and Nemirovsky[20]. In this model, the expression for(16) takes a relative
simple form

1

6

∫
d4x〈V |T

[
q̄(x)gc

λa

2
Ga

µνq(x), q̄σµνq

]
|V 〉N

= 1

16π2

∫
ds s

[
B(s)

Z(s)

]2[27

8
B2(s) + 27

2
sA(s)

(
2− A(s)

)]

(18)− 36η2

16π2

∫
ds sZ−3(s)

[
B4(s) + sB2(s)A(s)

] + 36η2

16π2

∫
ds s3Z−3(s)

[
A(s) − 1

]
A3(s).

The Nambu–Goldstone solution for this model is

(19)A
(
p2) =

{
2, p2 < η2/4,
1
2

(
1+ √

1+ 2η2/p2
)
, otherwise,

(20)B
(
p2) =

{√
η2 − 4p2, p2 < η2/4,

0, otherwise.



212 Z. Zhang, W.-Q. Zhao / Physics Letters B 612 (2005) 207–214

r
ubtract

ations.
ase

phase to

models

pion’s

due to
scale at
by the
r case is
se
The alternative Wigner solution takes the form

(21)B ′(p2) ≡ 0, A′(p2) = 1

2

(
1+

√
1+ 2η2

p2

)
.

Due toA(s) − 1 ∼ c/s for s → ∞ according to(19), the last term of right-hand side of Eq.(18) is logarithmic
divergent. In addition, replacingA(s) with A′(s) to (18), there still exists logarithmic divergence due toA′(s)
having the same behavior asA(s) in the large energy region. Because the vector partA(s) as well as the scala
partB(s) both reflect the nonperturbative information in the low energy region, it is more reasonable to s
the corresponding perturbative part rather than to simply ignore this divergent term in(18).

With the effective subtraction of the perturbative contribution, there is no UV divergence in above integr
Actually, the subtraction procedure guaranteesκ〈q̄q〉 playing the role of the order parameter for QCD chiral ph
transition because it becomes zero when QCD undergoes a phase transition from the Nambu–Goldstone
Wigner phase (that meansA(p2) → A′(p2) andB(p2) → 0).

4. Results and discussions

The determination of the mixed tensor susceptibility is based on the same effective gluon propagator
g2D(s), which had been used in Refs.[12,21]. In general, the quark–quark interactiong2D(s) has the form

(22)g2D(s) = 4πα(s)

s
,

wheres = p2. Two popular quark–quark interaction models with two parameters forα(s) are investigated here:

(23)α1(s) = 3πsχ2e−s/∆

4∆2
,

(24)α2(s) = dπs
χ2

s2 + ∆
,

whered = 27
12. The two low-momentum parameters, the strength parameterχ and the range parameter∆, are varied

with the pion decay constant fixed at 87 MeV which is more appropriate in the chiral limit rather than the
mass-shell value of 93 MeV. Noted that the above quark–quark interactions dominate for smalls and simulate
the infrared enhancement and confinement. Because the effective quark–quark interactions(23), (24) have a finite
range in momentum space, the momentum integral for the calculation of the quark condensate

(25)〈q̄q〉 = − 3

4π2

∞∫
0

ds s
B(s)

sA2(s) + B2(s)
,

is finite. According to[12], the obtained values of the chiral low energy coefficientsLi following Ref. [21] based
on both ansatz(23) and(24) are compatible with the phenomenological values. The model ansatz(24) has been
successfully used to investigate the space structure of the non-local quark condensate〈q̄(x)q(0)〉 in Ref. [22]
within GCM formalism. It should be stressed in this context that our interactions are not renormalizable
using the bare quark–gluon vertex within the rainbow-ladder truncated DSE formalism. Therefore, the
which a condensate is defined in our calculation is a typical hadronic scale, which is implicitly determined
model quark–quark interaction and the solutions of the DSEs for the dressed quark propagator. The simila
the determination of the vacuum condensate in the instanton liquid model[24] where the scale is set by the inver
instanton size.
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Table 1
The value ofκ〈q̄q〉 for Munczek–Nemirovsky model

η (GeV2) 〈q̄q〉1/3 (MeV) 〈q̄σGq〉1/5 (MeV) κ〈q̄q〉 (GeV4) κ (GeV)

1.06 −114 −310 −1.0× 10−3 0.67

Table 2
The value ofκ〈q̄q〉 for model 1 with three sets of different parameters

∆ (GeV2) χ (GeV) 〈q̄q〉1/3 (MeV) 〈q̄σGq〉1/5 (MeV) κ〈q̄q〉 (GeV4) κ (GeV)

0.2 1.55 −213 −529 −1.9× 10−3 0.18
0.02 1.39 −170 −438 −2.4× 10−3 0.50
0.002 1.30 −149 −392 −2.2× 10−3 0.66

Table 3
The value ofκ〈q̄q〉 for model 2 with four sets of different parameters

∆ (GeV4) χ (GeV) 〈q̄q〉1/3 (MeV) κ〈q̄q〉 (GeV4) κ (GeV)

1×10−1 1.77 −290 −3.8× 10−3 0.16
1×10−2 1.33 −250 −2.8× 10−3 0.18
1×10−4 0.95 −217 −2.8× 10−3 0.27
1×10−6 0.77 −204 −2.8× 10−3 0.33

To check the sensitivity of the mixed tensor susceptibility on the forms of quark–quark interactions, the
models with different sets of parametersχ and∆ are investigated below, where the results for the quark conde
are also given. For Munczek–Nemirovsky model and the Gaussian type model, the values for the mixed
gluon condensate〈q̄σGq〉 are listed inTables 1–3.

The results for several condensates of QCD vacuum obtained using Munczek–Nemirovsky model ar
in Table 1. This simple confining model has been extensively used by Roberts and his coworkers[25] and the
Gaussian type model was inspired by this model. FromTable 1we can see that the mixed tensor susceptib
κ〈q̄q〉 is very small. InTable 2we display the values for〈q̄q〉 andκ〈q̄q〉 based on model 1 with three sets
parameters and inTable 3the same quantities with four sets of parameters based on model 2. In both cas
obtained values for〈q̄q〉 are compatible with the standard phenomenological values in SVZ sum rules, w
the mixed tensor susceptibilityκ〈q̄q〉 is very small. The previous estimation ofκ〈q̄q〉 obtained in Ref.[6] has
opposite sigh and its value is 0.10 GeV4. Actually, the value of the quark condensate tensor susceptibilityχ〈q̄q〉
obtained within GCM formalism[11] is also very small compared with the estimation based on SVZ sum r
In fact, different versions of SVZ sum rules have given very different values forχ〈q̄q〉 in previous studies[6,8,9].
It shows that the induced vacuum condensates have very little impact on the determination of the nucleo
charge from the theoretical formalism of DSEs.

In summary, we have investigated the mixed tensor susceptibility at the mean field level in the framew
GCM/DSE formalism. In the calculations, the vacuum matrix elements for the operator in terms of gluonic
can be obtained by substituting the gluonic fields with the quark color current operator and the model gluon
gator which describes the effective quark–quark interaction within the GCM formalism. To subtract the pertu
contribution to the expression for the mixed tensor susceptibility, the Wigner solution to the quark gap e
was used self-consistently in this formalism. Using different effective quark–quark interaction models, w
that the mixed tensor susceptibility as well as the quark condensate tensor susceptibility are both very s
the obtained values for these induced vacuum condensates of QCD are not sensitive to the detailed infra
of g2D(s). It shows that the induced vacuum condensates have little effect on the determination of the
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tigate the
tensor charge from our study. Finally, we want to stress that above approach can also be used to inves
other mixed susceptibility of the QCD vacuum.
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