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Abstract

We calculate the mixed tensor susceptibility of QCD vacuum in the framework of the global color symmetry model. In our
calculation, the functional integration over gluon fields can be performed and the gluonic vacuum observable can be expressed in
terms of the quark operators and the effective gluon correlator. The mixed tensor susceptibility was obtained with the subtraction
of the perturbative contribution which is evaluated by the Wigner solution of the quark gap equation. Using several different
effective quark—quark interaction models, we find the values of the mixed tensor susceptibility are very small.
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1. Introduction

In SVZ sum rules, in order to determine the static properties of hadrons it was suggested to consider two-point
correlator functions of quark currents in the presence of an external constant classical field, where nonperturbative
effects are taken into account in the so-called vacuum susceptibjlitieEhese induced condensates play impor-
tant roles in determination of the hadron properties such as the nucleon magnetic mdinémesisovector axial
coupling constanf2—4], the isoscalar axial coupling consta#j, the pion—nucleon coupling constgbt and the
nucleon tensor chardé,7] within this version of SVZ sum rules. In the literature, there are always two kinds of
vacuum susceptibility that appear in the conventional two-point treatment of an external current field: one is the
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induced quark condensate and the other is the induced mixed quark—gluon condensate. For convenience, we refe
to the former as the quark condensate susceptibility and the later as mixed condensate susceptibility in this Letter.

The vacuum tensor susceptibilities are relevant for the determination of nucleon tensor{6(¥drgée value
of nucleon charge is related to the first moment of the transversity distribution, whereh1(x) is an additional
twist-two chirality violating structure function which can be measured in the Drell-Yan process with both beam and
target transversely polarized. The previous evaluation of the quark condensate tensor susceptibility were performed
in the framework of QCD sum ruld§-9], the chiral constituent mod¢10] and global color symmetry model
(GCM) [11], respectively. Actually, there still exist uncertainty about this induced susceptibility since different
theoretical treatments can give very different results, which should be checked by the future measurement of the
transversity distributiork1(x). Another tensor susceptibility, the mixed condensate tensor susceptibility was only
evaluated roughly ifi6] within the two-point function of QCD sum rules.

GCM is a quark—gluon quantum field theory that very successfully models QCD for low energy hadronic
processe$l4—-18] In the framework of this truncated DSE model, the determination of the dimension 5 mixed
quark—gluon condensate of QCD vacuum had been performd@jrmand the authorfl3] had explored the ther-
mal properties of this mixed condensate at finite temperature and chemical potential. In this Letter, a method to
evaluate the mixed vacuum tensor susceptibility is proposed within the GCM formalism and the numerical results
for the mixed tensor susceptibility are given.

2. Formalism

In a Euclidean space formulation, with,,, y,} = 25,., andy;r =y, the inverse of the dressed quark propagator
at the chiral limit has the decomposition

G Yp)=iy p+Z(p) =iy pA(p?) + B(p?). @

where X' (p) stands for the dressing self-energy of quarks. Within the GCM formalism, the quark self-energy is
determined by the rainbow-ladder truncated quark DSE

b —f‘/d‘l" 2Dy (p — Q) yuG @)
(P)=3 P w (P = vuG @ vy,
wheregZD,w(p — q) is the effective gluon two-point function. It is important to appreciate that while the GCM
has a formal global color symmetry, the detailed dynamical consequences of the local color symmetry of QCD are
modelled by the particular form @f2D(s). There is an infrared saturation effect which, in conjunction with the
dynamical chiral symmetry breaking, appears to suppress details of the formal color gauge symmetn|d7QCD

In the previous studies, various model forms 81D (s) [16—18]had been used for a variety of hadronic processes

in the rainbow truncated DSE formalism. The phenomenon of the saturation effect is revealed by the fact that the
forms of the solutions\ (s) andB(s) at smalls are insensitive to the detailed infrared formg8iD (s) characterized

by its large value at smatl.

We will calculate the induced QCD vacuum condensates from the saddle-point expansion, that is, we will work
at the mean field level. This is consistent with the largelimit in the quark fields for a given model gluon
two-point function. For simplicity, the Feynman-like gaugeD ., (x — y) = §,,82D(x — y) was adopted in our
calculation and Eq2) takes the form

2 2_§/ d*q o Ag®)p-q
[A(p) 1][7 - 3 (27.[)4g D(p q)qZAZ(q2)+BZ(q2)’ (3)

2 _1_6/ d*q 2 _ B(g%)
B =3 | ot PP a1 megy @




Z. Zhang, W-Q. Zhao / Physics Letters B 612 (2005) 207214 209

In the chiral limit, there are two qualitatively distinct solutions in E¢3). and (4) The “Nambu—Goldstone”
solution characterized bg(p?) # 0 describes a phase: (1) chiral symmetry is dynamically broken for it provides

a momentum dependent constituent quark nidgg?) = B(p?)/A(p?); and (2) the dressed quarks are confined

for the dressed quark propagator does not have a Lehmann represeiif@fidme alternative “Wigner” solution
characterized b (p?) = 0 describes a phase with neither dynamical chiral symmetry breaking nor confinement. In
this Letter, we refer to the quark propagator in terms of the trivial solution of the gap equation as the “perturbative”
quark propagato6Pe'(p?) with only the vector part

, 8 [ d% p-q
[A (1’2) - 1]172 = 5/ (2n)4g2D( q)T(qz) (%)

This “perturbative” quark propagator can be seen as the expectation value of the opggatoyg; (y)] over the
perturbative vacuurhP) at the mean field level in the framework of GCM.

From the GCM generating functional, it is now straightforward to calculate the vacuum expectation value (VEV)
of any quark operator of the form

Oy = (éleﬁzlqil)(éjzAgzz‘Iiz) T (‘ijnAz:zn %n) (6)

in the mean field vacuum. Here th") stands for an operator in Dirac, flavor, and color space. The VEV of the
operatorQ, take the form23]

@ A®
n) = (1" Z( )] A/lzl" /ZznGilipa)"'Ginjpm)]’ )

where p stands for a permutation of theindices. Once the dressing quark propagatog?) is determined, one

can calculate the two quark condenséie), the four quark condensatg AP gg3A®@g), etc., in the mean field

level. Since the functional integration over the gluon figlff is quadratic in the framework of GCM, one can
perform the integration over gluon field analytically. Using the same shorthand notation for the typical Gaussian
integrations as in Ref12], we have

1 1 . 19y
/DAC_?AD A+]A=€21D], fDAAe zAD A-‘r]A (]D)eszj

/DA A2e=2AD M AHIA [D+(jD)2]e%fo, (8)

whereD is the dressing gluon propagator ajfdis the quark color current. Because the gluon vacuum average can

be replaced by a quark color curremu £-q together with the gluon two-point functiah, one can perform the
integration over the quark operators in the mean field vacuum as described above. In this way, one can in principle
obtain the vacuum expectation of value for any gluonic fields. This technique provides an feasible way to evaluate
the expectation value of the operators with low-dimensional gluon fields such as the mixed quark—gluon condensate
g(gGuvo™’q) in GCM (note that for the VEV of operators with high powers of gluonic fields, this procedure will

get rather complex).

3. Mixed tensor susceptibility

With above preparation, the mixed tensor susceptibility can be calculated in the mean field level within this DSE
model. The induced tensor susceptibilitiesc and¢ are defined through

(V|‘_IUMVQ|V)Z:quZuv<éQ)» 9)

_ oA -
(V1d8e—GvalV)z = 8gk Zuv{dq). (10)

2
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(V|échSG;wCI|V)Z =—iget Zuv{qq), (11)
whereZ,,, stands for the external fieldV| - - - |V)z denotes the VEV over the QCD vacuum at the presence of the
external fieldZ,,, andGW = %%ewaﬁ G*P¢_ The nonzero VEVs of the operators above are due to the breakdown
of Lorentz invariance in the presence of external constant #gld From the QCD partition function for quarks
in Euclidean space in the presence of the external field, the formulae for evaluating these susceptibilities take the
form

1 1

X = / d (VIT[G )04 (6), Goyud |IV) = 51T, 0, (12)
1 A4 1

€ldq) =3 / d*x (V|T|:é(x)gc7Gqu(X), cqu}w - 1.0, (13)

according to Refd6,7]. Due to the fact that the vacuum susceptibilities reflect the nonperturbative structure of the
QCD vacuum,IT, (0) and 1, (0) on the right-hand side of Eqé&l2) and (13)should be subtracted by the corre-
sponding perturbative contribution terms. Within the DSE formalism, the perturbative contributioy(@® and
11, (0) can be evaluated by the trivial quark propagator, namely the “perturbative” quark propagator in terms of the
trivial Wigner solution to the dressed quark gap equati@snd(4). This is a reasonable procedure because the
Wigner solution of the dressed quark propagator describes a phase with neither DCSB nor confinement and the
difference between the Nambu solution and the Wigner solution vanishes at short distance according to numerical
studies. In fact, the Wigner solution has been used extensively to play the role of the perturbative dressed quark
propagator in the study of thermal properties of QCD within the DSE formdlis8)y where the bag constant
was defined as the difference of the pressure between the true QCD vacuum and the perturbative QCD vacuum,
which were evaluated by the Nambu—Goldstone solution and the Wigner solution to the quark propagator, respec-
tively [19].

Therefore, we rewrite the Eg€l2) and (13)as

1 1
x{qq) = é/d4x(VIT[CY(X)%CI(X),éduvq]lV)N - é/d4x(PIT[é(X)Guuq(X),éfmuq]lf’)w

1
. 114 . A - N
clia) =5 [ d V1T a5 Glua ). dong [IV)
1 4 — Al a ~ w 1 np
_E/d x (P|T q(x)gC3GWq(x),qawq | P) = g1 (0). (15)

By substituting the “perturbative” quark propagathe’(p2) to Eq.(7), the determination of the expectation value
of the T-product operators in terms of quark fields over the perturbative vacuum Rtatan be performed self-
consistently within the GCM formalism. It should be noted that the evaluation @§) in Ref.[11] is consistent
with 2Eq. (14) because in this special case the subtraction terms t¢1Byjhas zero contribution tg (gg) due to
B'(p?) =0.

Using Eq.(8), the expression for VEV of above T-product operator including gluonic fields is converted to the
VEV for the product with the form of6) in terms of six quark fields and eight quark fields. According to &Y.
we have

1 4 ~ A a =~ N
g [ 4 X WVIT1 48— Guyq(x). 4o |IV)

4
= _éi/dx“/dz“gz[aﬁD(z —0)]{trp[G(x — 21,6 (z — 000, G(0 - x)]

+trD[G(x —00,,GO0—-2)y,G(z — x)]}
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—2i/dx“/dz‘ll/dzggzD(Zl—X)gZD(ZZ—x)

x {trp[G(x — 21y, G (z1 — 22)»» G (22 — 000, G (0 — x) |

+trp[G(x —21)¥uG (21 — 0)0,,,G(0— 22) 1, G (22 — x) |

+1rp[G(x — 0)0,,,G (0 — 21)¥, G(z1 — 22) G (z2 — 1) ]} (16)

SubstitutingGP®'(x — y) for G(x — y), the similar expression for the VEV of the same operator over the perturbative
vacuum can be obtained. After Fourier transformation, we find that the first part of right-hand §ldg isfzero
and the final result for the mixed tensor susceptibility in the momentum space takes the form

_ 1 B(s) 27
K(‘M)=m/ds [Z( )i| [ B?(s )+—SA(S)(2 A(S))i|

3;5/dsdtfdxst 1- ngZD(s t, \/—x) _z(s)Z_l(t)B(s)
x {B(s)B2(t) + B()A(s) A(t)/stx — [A(s) — 1][2A(s) B(t)+/stx — A(t) B(s)]}
32:3_[5/.dsdt/dxst 1—x gZD(s t, \/_x)

x (Z )_Z(S)Z/_l(t)A/z(s)A (O[A' (1) — ][t — 4s1x?]

1
3
— @fdsdt/dxst 1—x2g2D(s,t,\/§x)
-1

x Z72()Z 1) A2 () AW [A(t) — 1][st — dstx?], (17)

whereZ(s) = s A%(s) + B(s) and Z'(s) = s A’2(s).

It should be noted that to get this expression the Dyson—Schwinger eq(@tias been used again. The UV di-
vergence of Eq(16)can be illustrated by a simple analytical confining maghad (p — ¢) = = (27)*125%(p — ¢),
which was proposed by Munczek and Nemirov$R9]. In this model, the expression f¢i6) takes a relative
simple form

1 4 P Af a = N
5 d"x(VI|T q(X)gc?qu(x),qawq V)

1 B$) 1127 g2 27
= _16712/ds [Z( )i| [ Be(s) + sA(s)(Z A(s))i|
3672 _ 3612 _
—~ 1TUTZ/dssz 3(5)[BH(s) + sBA(s)A(s)] + 1Tﬂz/dss3z 3)[Acs) —1]A3%). (18)
The Nambu—Goldstone solution for this model is
A(r) = { (14 V1+252/p?), otherwise (19)

2_4p2 2 _p2/4
B 2 :{ n P, P n » 20
(p ) 0, otherwise (20)
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The alternative Wigner solution takes the form

B'(p%) =0, A’(p2)=%(1+‘/1+2p—"22>. (21)

Due toA(s) — 1~ ¢/s for s — oo according to(19), the last term of right-hand side of E(L8) is logarithmic
divergent. In addition, replacing (s) with A’(s) to (18), there still exists logarithmic divergence due AQ(s)
having the same behavior &@<s) in the large energy region. Because the vector g&sh as well as the scalar
part B(s) both reflect the nonperturbative information in the low energy region, it is more reasonable to subtract
the corresponding perturbative part rather than to simply ignore this divergent t€t8).in

With the effective subtraction of the perturbative contribution, there is no UV divergence in above integrations.
Actually, the subtraction procedure guarante&gg) playing the role of the order parameter for QCD chiral phase
transition because it becomes zero when QCD undergoes a phase transition from the Nambu—Goldstone phase t
Wigner phase (that mean p?) — A’(p?) and B(p?) — 0).

4. Resultsand discussions
The determination of the mixed tensor susceptibility is based on the same effective gluon propagator models
¢°D(s), which had been used in Ref&2,21] In general, the quark—quark interactighD(s) has the form

g°D(s) = 47”;(”, (22)

wheres = p2. Two popular quark—quark interaction models with two parametersforare investigated here:
e*S/A

4727
2

a1(s) = 37rsX2 (23)

ax(s) =dms (24)

s24+ A’

whered = f—; The two low-momentum parameters, the strength paramedad the range parametar are varied
with the pion decay constant fixed at 87 MeV which is more appropriate in the chiral limit rather than the pion’s
mass-shell value of 93 MeV. Noted that the above quark—quark interactions dominate fos smdlkimulate
the infrared enhancement and confinement. Because the effective quark—quark inte(a8jj¢@4) have a finite

range in momentum space, the momentum integral for the calculation of the quark condensate

3 7 B(s)

—— | dss——2 | 25
472 | “O5A2(5) + B2(s) (25)
0

(gq) =

is finite. According tg12], the obtained values of the chiral low energy coefficidiht$ollowing Ref.[21] based

on both ansat£23) and(24) are compatible with the phenomenological values. The model af®&thas been
successfully used to investigate the space structure of the non-local quark condgnspté0)) in Ref. [22]

within GCM formalism. It should be stressed in this context that our interactions are not renormalizable due to
using the bare quark—gluon vertex within the rainbow-ladder truncated DSE formalism. Therefore, the scale at
which a condensate is defined in our calculation is a typical hadronic scale, which is implicitly determined by the
model quark—quark interaction and the solutions of the DSEs for the dressed quark propagator. The similar case is
the determination of the vacuum condensate in the instanton liquid rfftJelhere the scale is set by the inverse
instanton size.
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Table 1

The value ofc(gq) for Munczek—Nemirovsky model

n (GeV?) (@3 (Vev) (GoGg)'/® (MeV) «(dq) (GeV) x (GeV)
1.06 —-114 —-310 —1.0x 1073 0.67
Table 2

The value ofc(gq) for model 1 with three sets of different parameters

A (GeV?) x (GeV) (@)t (Mev) (qoGq)'/® (MeV) «(dq) (GeV?) « (GeV)
0.2 155 —213 —-529 -1.9x 1073 0.18
0.02 139 —170 —438 —24x10°3 0.50
0.002 130 —149 —392 —22x10°3 0.66
Table 3

The value ofc(gq) for model 2 with four sets of different parameters

A (GeVh) X (GeV) (@9)"/3 (Mev) «(3q) (GeVh) « (GeV)
1x101 1.77 —290 -38x103 0.16

1x 1072 1.33 —250 —28x1073 0.18

1x 1074 0.95 —217 -2.8x1073 0.27
1x 1076 0.77 —204 —2.8x1073 0.33

To check the sensitivity of the mixed tensor susceptibility on the forms of quark—quark interactions, the above
models with different sets of parametgrand A are investigated below, where the results for the quark condensate
are also given. For Munczek—Nemirovsky model and the Gaussian type model, the values for the mixed quark—
gluon condensatgo Gg) are listed inTables 1-3

The results for several condensates of QCD vacuum obtained using Munczek—Nemirovsky model are shown
in Table 1 This simple confining model has been extensively used by Roberts and his cowj@teand the
Gaussian type model was inspired by this model. Fiiiable 1we can see that the mixed tensor susceptibility
k{gq) is very small. InTable 2we display the values fofgq) and«(gq) based on model 1 with three sets of
parameters and ifiable 3the same quantities with four sets of parameters based on model 2. In both cases, the
obtained values fotgq) are compatible with the standard phenomenological values in SVZ sum rules, whereas
the mixed tensor susceptibiliy(gq) is very small. The previous estimation of{gg) obtained in Ref[6] has
opposite sigh and its value is 0.10 Ge\Actually, the value of the quark condensate tensor susceptikiliy )
obtained within GCM formalisnfil1] is also very small compared with the estimation based on SVZ sum rules.

In fact, different versions of SVZ sum rules have given very different valueg @) in previous studiefs,8,9]
It shows that the induced vacuum condensates have very little impact on the determination of the nucleon tensor
charge from the theoretical formalism of DSEs.

In summary, we have investigated the mixed tensor susceptibility at the mean field level in the framework of
GCM/DSE formalism. In the calculations, the vacuum matrix elements for the operator in terms of gluonic fields
can be obtained by substituting the gluonic fields with the quark color current operator and the model gluon propa-
gator which describes the effective quark—quark interaction within the GCM formalism. To subtract the perturbative
contribution to the expression for the mixed tensor susceptibility, the Wigner solution to the quark gap equation
was used self-consistently in this formalism. Using different effective quark—quark interaction models, we find
that the mixed tensor susceptibility as well as the quark condensate tensor susceptibility are both very small and
the obtained values for these induced vacuum condensates of QCD are not sensitive to the detailed infrared form
of g2D(s). It shows that the induced vacuum condensates have little effect on the determination of the nucleon
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tensor charge from our study. Finally, we want to stress that above approach can also be used to investigate the
other mixed susceptibility of the QCD vacuum.
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