56 research outputs found

    Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs

    Get PDF
    The therapeutic approach for the treatment of HIV infection is based on the highly active antiretroviral therapy (HAART), a cocktail of antiretroviral drugs. Notwithstanding HAART has shown different drawbacks like toxic side effects and the emergence of viral multidrug resistance. Nanotechnology offers new tools to improve HIV drug treatment and prevention. In this scenario, gold nanoparticles are an interesting chemical tool to design and prepare smart and efficient drug-delivery systems. Here we describe the preparation and antiviral activity of carbohydrate-coated gold nanoparticles loaded with anti-HIV prodrug candidates. The nucleoside reverse transcriptase inhibitors abacavir and lamivudine have been converted to the corresponding thiol-ending ester derivatives and then conjugated to ~3 nm glucose-coated gold nanoparticles by means of “thiol-for-thiol” ligand place exchange reactions. The drugs-containing glyconanoparticles were characterized and the pH-mediated release of the drug from the nanoparticle has been determined. The antiviral activity was tested by evaluating the replication of NL4-3 HIV in TZM-bl infected cells. The proof-of-principle presented in this work aims to introduce gold glyconanoparticles as a new multifunctional drug-delivery system in the therapy against HIV

    Rhamnose-based glycomimetic for recruitment of endogenous anti-rhamnose antibodies

    Get PDF
    Recruitment of natural antibodies towards tumour cells for their elimination by the immune system could be a highly specific and efficacious therapeutic strategy. While natural L-rhamnose has already been explored as a suitable antigen for antibody recruitment, we here report the first rhamnose-based glycomimetic to be used for such purpose. The glycomimetic is designed to be more hydrolytically and enzymatically stable than natural rhamnosides, provides a site for easy further conjugation and proved to capture anti-rhamnose IgG antibodies in serological ELISA assay

    Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10

    Get PDF
    29 p.-6 fig.-2 tab.-7 fig. supl.-2 tab. supl.-1 graph. abst.Siglec-10 is an inhibitory I-type lectin selectively recognizing sialoglycans exposed on cell surfaces, involved in several patho-physiological processes. The key role Siglec-10 plays in the regulation of immune cell functions has made it a potential target for the development of immunotherapeutics against a broad range of diseases. However, the crystal structure of the protein has not been resolved for the time being and the atomic description of Siglec-10 interactions with complex glycans has not been previously unraveled. We present here the first insights of the molecular mechanisms regulating the interaction between Siglec-10 and naturally occurring sialoglycans. We used combined spectroscopic, computational and biophysical approaches to dissect glycans' epitope mapping and conformation upon binding in order to afford a description of the 3D complexes. Our outcomes provide a structural perspective for the rational design and development of high-affinity ligands to control the receptor functionality.This study was supported by the project ‘‘GLYTUNES’’ funded by MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN 2017) (2017XZ2ZBK, 2019–2022) to A.S.; by progetto POR SATIN and Progetto POR CampaniaOncoterapia to A.M.; by the European Commission (H2020-MSCA- 814102-SWEET CROSSTALK project) to A.M., R.M., and A.S.. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No 851356 to R.M. FSE,PON Ricerca e Innovazione 2014–2020, Azione I.1 ‘‘Dottorati Innovativi con caratterizzazione Industriale’’ is acknowledged for funding the PhD grant to R.E.F. Grants by the Spanish Ministry of Science MICINN (CTQ2017-88353-R and fellowship BES 2015–071588 to J.G.-C.) and Wellcome Trust 103744/Z/14/Z to P.R.C. are acknowledged.Peer reviewe

    Human Milk Oligosaccharide 2′-Fucosyllactose Inhibits Ligand Binding to C-Type Lectin DC-SIGN but Not to Langerin

    Get PDF
    Human milk oligosaccharides (HMOs) and their most abundant component, 2′-Fucosyllactose (2′-FL), are known to be immunomodulatory. Previously, it was shown that HMOs and 2′-FL bind to the C-type lectin receptor DC-SIGN. Here we show, using a ligand-receptor competition assay, that a whole mixture of HMOs from pooled human milk (HMOS) and 2′-FL inhibit the binding of the carbohydrate-binding receptor DC-SIGN to its prototypical ligands, fucose and the oligosaccharide Lewis-B, (Leb) in a dose-dependent way. Interestingly, such inhibition by HMOS and 2′-FL was not detected for another C-type lectin, langerin, which is evolutionarily similar to DC-SIGN. The cell-ligand competition assay using DC-SIGN expressing cells confirmed that 2′-FL inhibits the binding of DC-SIGN to Leb. Molecular dynamic (MD) simulations show that 2′-FL exists in a preorganized bioactive conformation before binding to DC-SIGN and this conformation is retained after binding to DC-SIGN. Leb has more flexible conformations and utilizes two binding modes, which operate one at a time via its two fucoses to bind to DC-SIGN. Our hypothesis is that 2′-FL may have a reduced entropic penalty due to its preorganized state, compared to Leb, and it has a lower binding enthalpy, suggesting a better binding to DC-SIGN. Thus, due to the better binding to DC-SIGN, 2′-FL may replace Leb from its binding pocket in DC-SIGN. The MD simulations also showed that 2′-FL does not bind to langerin. Our studies confirm 2′-FL as a specific ligand for DC-SIGN and suggest that 2′-FL can replace other DC-SIGN ligands from its binding pocket during the ligand-receptor interactions in possible immunomodulatory processes

    Emerging glyco-based strategies to steer immune responses

    Get PDF
    Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity

    Recent advances on smart glycoconjugate vaccines in infections and cancer

    Get PDF
    Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as “tumor-associated carbohydrate antigens”. Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy

    Carbohydrate-based adjuvants

    Get PDF
    Carbohydrate adjuvants are safe and biocompatible compounds usable as sustained delivery systems and stimulants of ongoing humoral and cellular immune responses, being especially suitable for the development of vaccines against intracellular pathogens where alum is useless. The development of new adjuvants is difficult and expensive, however, in the last two years, seven new carbohydrate-based adjuvants have been patented, also there are twelve ongoing clinical trials of vaccines that contain carbohydrate-based adjuvants, as well as numerous publications on their mechanism of action and safety. More research is necessary to improve the existent adjuvants and develop innovative ones

    Inclusion properties, polymorphism and desolvation kineticsin a new 2-pyridyl iminophenol compound with 1D nano-channels

    No full text
    The syntheses, crystal structures and solid-state inclusion properties of 3- and 2-pyridyl 3,5-diphenyl-4-hydroxy iminophenols are reported. Their solid-state organization is based oil supramolecular head-to-tail chains sustained by O-H center dot center dot center dot N hydrogen bonds. It is shown that the position of the pyridinic nitrogen is crucial to determine the inclusion propensity. Although formation of nonsolvated close packed networks is observed for both compounds, the 2-pyridyl iminophenol derivative is also able to form nanochannels hosting arrays of guest molecules (toluene, acetone, chloroform). Most interestingly the toluene solvate occurs ill two concomitant polymorphs, presenting different channel arrangements, whose properties are Studied also by means of high-pressure X-ray diffraction. Thermal analyses arc used to determine the kinetics of desolvation of all solvates, whose thermal behavior is correlated with their supramolecular structures

    STD NMR study of the interactions between antibody 2G12 and synthetic oligomannosides that mimic selected branches of gp120 glycans

    No full text
    The human immunodeficiency virus type-1 (HIV-1) is able to shield immunogenic peptide epitopes on its envelope spike (a trimer of two glycoproteins, gp120 and gp41) by presenting numerous host-derived N-linked glycans. Nevertheless, broadly neutralizing antibodies against gp120 and gp41 have been isolated from HIV-1-infected patients and provide protection against viral challenge in animal models. Among these, the monoclonal antibody 2G12 binds to clusters of high-mannose-type glycans that are present on the surface of gp120. These types of glycans have thus been envisaged as target structures for the development of synthetic agents capable of eliciting 2G12-like antibodies. High-resolution structural studies of 2G12 and chemically defined glycan-type ligands, including crystallographic data, have been performed to gain an insight into this interaction. Further studies are still required to design a carbohydrate-based vaccine for HIV. Our previous NMR studies highlighted different recognition modes of two branched synthetic oligosaccharides, a penta- and a heptamannoside, by 2G12 in solution. In order to clarify the underlying structural reasons for such different behaviors, we have herein "dissected" the branches into the linear tri- and tetra- oligomannosides by chemical synthesis and studied their interactions with 2G12 in solution by saturation transfer difference (STD) NMR spectroscopy. The results confirm the distinct preferences of 2G12 for the studied branches and afford explanations for the observed differences. This study provides important structural information for further ligand optimizations. Possible effects of structural modifications on the solvent-exposed end of the ligands are also discussed
    corecore