364 research outputs found

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    Microwave response of an NS ring coupled to a superconducting resonator

    Get PDF
    A long phase coherent normal (N) wire between superconductors (S) is characterized by a dense phase dependent Andreev spectrum . We probe this spectrum in a high frequency phase biased configuration, by coupling an NS ring to a multimode superconducting resonator. We detect a dc flux and frequency dependent response whose dissipative and non dissipative components are related by a simple Debye relaxation law with a characteristic time of the order of the diffusion time through the N part of the ring. The flux dependence exhibits h/2eh/2e periodic oscillations with a large harmonics content at temperatures where the Josephson current is purely sinusoidal. This is explained considering that the populations of the Andreev levels are frozen on the time-scale of the experiments.Comment: 5 pages,4 figure

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Contactless photoconductivity measurements on (Si) nanowires

    Full text link
    Conducting nanowires possess remarkable physical properties unattainable in bulk materials. However our understanding of their transport properties is limited by the difficulty of connecting them electrically. In this Letter we investigate phototransport in both bulk silicon and silicon nanowires using a superconducting multimode resonator operating at frequencies between 0.3 and 3 GHz. We find that whereas the bulk Si response is mainly dissipative, the nanowires exhibit a large dielectric polarizability. This technique is contactless and can be applied to many other semiconducting nanowires and molecules. Our approach also allows to investigate the coupling of electron transport to surface acoustic waves in bulk Si and to electro-mechanical resonances in the nanowires

    Geometry-related magnetic interference patterns in long SNS Josephson junctions

    Full text link
    We have measured the critical current dependence on the magnetic flux of two long SNS junctions differing by the normal wire geometry. The samples are made by a Au wire connected to W contacts, via Focused Ion Beam assisted deposition. We could tune the magnetic pattern from the monotonic gaussian-like decay of a quasi 1D normal wire to the Fraunhofer-like pattern of a square normal wire. We explain the monotonic limit with a semiclassical 1D model, and we fit both field dependences with numerical simulations of the 2D Usadel equation. Furthermore, we observe both integer and fractional Shapiro steps. The magnetic flux dependence of the integer steps reproduces as expected that of the critical current Ic, while fractional steps decay slower with the flux than Ic.Comment: 5 pages, 4 figure

    Comment on Qian et al. 2008: La Niña and El Niño composites of atmospheric CO2 change

    Get PDF
    It is well known that interannual extremes in the rate of change of atmospheric CO2 are strongly influenced by the occurrence of El Niño-Southern Oscillation (ENSO) events. Qian et al. presented ENSO composites of atmospheric CO2 changes. We show that their composites do not reflect the atmospheric changes that are most relevant to understanding the role of ENSO on atmospheric CO2 variability. We present here composites of atmospheric CO2 change that differ markedly from those of Qian et al., and reveal previously unreported asymmetries between the effects on the global carbon system of El Niño and La Niña events. The calendar-year timing differs; La Niña changes in atmospheric CO2 typically occur primarily over September–May, while El Niño changes occur primarily over December–August. And the net concentration change is quite different; La Niña changes are about half the size of El Niño changes. These results illustrate new aspects of the ENSO/global carbon budget interaction and provide useful global-scale benchmarks for the evaluation of Earth System Model studies of the carbon system

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Subsurface life can modify volatile cycling on a planetary scale

    Get PDF
    The past decade of environmental microbiology has revealed that subsurface environments, both marine and continental, harbor one of the largest ecosystems of our planet, with diversity and biomass rivaling those of the surface. In addition, subsurface life has been recently shown to contribute significantly to the planet’s biogeochemistry, with microbial activity potentially playing an important role in controlling the flux and composition of volatiles recycled between the Earth’s surface and interior, which has broad implications for the search for life beyond our planet. Current efforts to discover extraterrestrial life are focused on planetary bodies with largely inhospitable surfaces, such as Mars, Venus, Europa, Titan, and Enceladus. In these locations, subsurface environments might provide niches of habitability, making the study of deep microbial life a priority for future astrobiological missions. Understanding how volatile elements are exchanged between planetary surfaces and interiors and the role of a subsurface biosphere in altering their composition and flux might provide a tractable target for defining planetary habitability and the detection of subsurface life forms.Fil: Giovanelli, D.. Università degli Studi di Napoli Federico II; Italia. Tokyo Institute of Technology; Japón. Rutgers University; Estados Unidos. Consiglio Nazionale delle Ricerche; Italia. Woods Hole Oceanographic Institution; Estados UnidosFil: Barry, P. H.. Woods Hole Oceanographic Institution; Estados UnidosFil: Bekaert, D. V.. Woods Hole Oceanographic Institution; Estados UnidosFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Cordone, A.. Università degli Studi di Napoli Federico II; ItaliaFil: Covone, G.. Università degli Studi di Napoli Federico II; Italia. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Jessen, G.. Universidad Austral de Chile; ChileFil: Lloyd, K.. University of Tennessee; Estados UnidosFil: de Moor, J. M.. Universidad Nacional; Costa RicaFil: Morrison, S. M.. Carnegie Institution For Science; Estados UnidosFil: Schrenk, M. O.. Michigan State University; Estados UnidosFil: Vitale Brovarone, A.. Alma Mater Studiorum Universit`a Di Bologna; Italia. Sorbonne University; Francia. Museum National d’Histoire Naturelle; Franci
    • …
    corecore