184 research outputs found

    Inhibition of Reactive Gliosis Attenuates Excitotoxicity-Mediated Death of Retinal Ganglion Cells

    Get PDF
    Reactive gliosis is a hallmark of many retinal neurodegenerative conditions, including glaucoma. Although a majority of studies to date have concentrated on reactive gliosis in the optic nerve head, very few studies have been initiated to investigate the role of reactive gliosis in the retina. We have previously shown that reactive glial cells synthesize elevated levels of proteases, and these proteases, in turn, promote the death of retinal ganglion cells (RGCs). In this investigation, we have used two glial toxins to inhibit reactive gliosis and have evaluated their effect on protease-mediated death of RGCs. Kainic acid was injected into the vitreous humor of C57BL/6 mice to induce reactive gliosis and death of RGCs. C57BL/6 mice were also treated with glial toxins, alpha-aminoadipic acid (AAA) or Neurostatin, along with KA. Reactive gliosis was assessed by immunostaining of retinal cross sections and retinal flat-mounts with glial fibrillary acidic protein (GFAP) and vimentin antibodies. Apoptotic cell death was assessed by TUNEL assays. Loss of RGCs was determined by immunostaining of flat-mounted retinas with Brn3a antibodies. Proteolytic activities of matrix metalloproteinase-9 (MMP-9), tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) were assessed by zymography assays. GFAP-immunoreactivity indicated that KA induced reactive gliosis in both retinal astrocytes and in Muller cells. AAA alone or in combination with KA decreased GFAP and vimentin-immunoreactivity in Mϋller cells, but not in astrocytes. In addition AAA failed to decrease KA-mediated protease levels and apoptotic death of RGCs. In contrast, Neurostatin either alone or in combination with KA, decreased reactive gliosis in both astrocytes and Mϋller cells. Furthermore, Neurostatin decreased protease levels and prevented apoptotic death of RGCs. Our findings, for the first time, indicate that inhibition of reactive gliosis decreases protease levels in the retina, prevents apoptotic death of retinal neurons, and provides substantial neuroprotection

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    MMP-2 siRNA Inhibits Radiation-Enhanced Invasiveness in Glioma Cells

    Get PDF
    Our previous work and that of others strongly suggests a relationship between the infiltrative phenotype of gliomas and the expression of MMP-2. Radiation therapy, which represents one of the mainstays of glioma treatment, is known to increase cell invasion by inducing MMP-2. Thus, inhibition of MMP-2 provides a potential means for improving the efficacy of radiotherapy for malignant glioma.We have tested the ability of a plasmid vector-mediated MMP-2 siRNA (p-MMP-2) to modulate ionizing radiation-induced invasive phenotype in the human glioma cell lines U251 and U87. Cells that were transfected with p-MMP-2 with and without radiation showed a marked reduction of MMP-2 compared to controls and pSV-transfected cells. A significant reduction of proliferation, migration, invasion and angiogenesis of cells transfected with p-MMP-2 and in combination with radiation was observed compared to controls. Western blot analysis revealed that radiation-enhanced levels of VEGF, VEGFR-2, pVEGFR-2, p-FAK, and p-p38 were inhibited with p-MMP-2-transfected cells. TUNEL staining showed that radiation did not induce apoptosis in U87 and U251 cells while a significant increase in TUNEL-positive cells was observed when irradiated cells were simultaneously transfected with p-MMP-2 as compared to controls. Intracranial tumor growth was predominantly inhibited in the animals treated with p-MMP-2 alone or in combination with radiation compared to controls.MMP-2 inhibition, mediated by p-MMP-2 and in combination with radiation, significantly reduced tumor cell migration, invasion, angiogenesis and tumor growth by modulating several important downstream signaling molecules and directing cells towards apoptosis. Taken together, our results demonstrate the efficacy of p-MMP-2 in inhibiting radiation-enhanced tumor invasion and progression and suggest that it may act as a potent adjuvant for radiotherapy in glioma patients

    In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model

    Get PDF
    BACKGROUND: ATP is an important signalling molecule in the peripheral and central nervous system. Both glioma growth and tumor resection induces cell death, thus liberating nucleotides to the extracellular medium. Nucleotides are hydrolyzed very slowly by gliomas when compared with astrocytes and induce neuronal cell death and glioma proliferation. The objective of the present study was to test the involvement of extracellular ATP in glioblastoma growth in a rat glioma model. METHODS: To deplete the extracellular ATP, the enzyme apyrase was tested on the treatment of gliomas implanted in the rats CNS. One million glioma C6 cells in 3 microliters of DMEM/FCS were injected in the right striata of male Wistar rats, 250–270 g. After 20 days, the rats were decapitated and the brain sectioning and stained with hematoxylin and eosine. We performed immunohistochemical experiments with Ki67, CD31 and VEGF. Total RNA was isolated from cultured glioma C6 cells and the cDNA was analyzed by Real Time-PCR with primers for the NTPDase family. RESULTS: C6 glioma cells effectively have a low expression of all NTPDases investigated, in comparison with normal astrocytes. The implanted glioma co-injected with apyrase had a significant reduction in the tumor size (p < 0.05) when compared with the rats injected only with gliomas or with gliomas plus inactivated apyrase. According to the pathological analysis, the malignant gliomas induced by C6 injection and co-injected with apyrase presented a significant reduction in the mitotic index and other histological characteristics that indicate a less invasive/proliferative tumor. Reduction of proliferation induced by apyrase co-injection was confirmed by counting the percentage of Ki67 positive glioma cell nuclei. According to counts with CD31, vessel density and neoformation was higher in the C6 group 20 days after implantation. Confirming this observation, rats treated with apyrase presented less VEGF staining in comparison to the control group. CONCLUSION: These results indicate that the participation of extracellular ATP and the ecto-nucleotidases may be associated with the development of this type of brain tumor in an in vivo glioma model

    Mutation in Archain 1, a Subunit of COPI Coatomer Complex, Causes Diluted Coat Color and Purkinje Cell Degeneration

    Get PDF
    Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)–induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the δ subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration

    TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells

    Get PDF
    Tumour growth is tightly related to new blood vessel formation, tissue remodelling and invasiveness capacity. A number of tissular factors fuel the growth of glioblastoma multiforme, the most aggressive brain neoplasm. In fact, gene array analyses demonstrated that the proapoptotic cytokine tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) inhibited mRNA expression of VEGF, along with those of matrix metalloproteinase-2 (MMP-2), its inhibitor tissue inhibitor of matrix metalloproteinases-2 (TIMP-2), as well as the tumour invasiveness-related gene secreted protein acid rich in cysteine (SPARC) in different human glioblastoma cell lines. Particularly, VEGF mRNA and protein expression and release from glioblastoma cells were also inhibited by TRAIL. The latter also exerted antimitogenic effects on human umbilical vein endothelial cells (HUVECs). With the same cells, TRAIL inhibited new vessel formation in the in vitro matrigel model, as well as it exerted powerful inhibition of blood vessel formation induced by an angiogenic cocktail administered in subcutaneous pellets in vivo in the C57 mouse. Moreover, the expression of MMP-2, its inhibitor TIMP-2 and the tumour invasiveness-related protein SPARC were effectively inhibited by TRAIL in glioblastoma cell lines. In conclusion, our data indicate that TRAIL inhibits the orchestra of factors contributing to glioblastoma biological aggressiveness. Thus, the TRAIL system could be regarded as a molecular target to exploit for innovative therapy of this type of tumour

    Suffocating cancer: hypoxia-associated epimutations as targets for cancer therapy

    Get PDF
    Lower than normal levels of oxygen (hypoxia) is a hallmark of all solid tumours rendering them frequently resistant to both radiotherapy and chemotherapy regimes. Furthermore, tumour hypoxia and activation of the hypoxia inducible factor (HIF) transcriptional pathway is associated with poorer prognosis. Driven by both genetic and epigenetic changes, cancer cells do not only survive but thrive in hypoxic conditions. Detailed knowledge of these changes and their functional consequences is of great clinical utility and is already helping to determine phenotypic plasticity, histological tumour grading and overall prognosis and survival stratification in several cancer types. As epigenetic changes - contrary to genetic changes - are potentially reversible, they may prove to be potent therapeutic targets to add to the cancer physicians' armorarium in the future

    Resolving early mesoderm diversification through single-cell expression profiling.

    Get PDF
    In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.We thank M. de Bruijn, A. Martinez-Arias, J. Nichols and C. Mulas for discussion, the Cambridge Institute for Medical Research Flow Cytometry facility for their expertise in single-cell index sorting, and S. Lorenz from the Sanger Single Cell Genomics Core for supervising purification of Tal1−/− sequencing libraries. ChIP-seq reads were processed by R. Hannah. Research in the authors’ laboratories is supported by the Medical Research Council, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, Bloodwise, the Leukemia and Lymphoma Society, and the Sanger-EBI Single Cell Centre, and by core support grants from the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute and by core funding from Cancer Research UK and the European Molecular Biology Laboratory. Y.T. was supported by a fellowship from the Japan Society for the Promotion of Science. W.J. is a Wellcome Trust Clinical Research Fellow. A.S. is supported by the Sanger-EBI Single Cell Centre. This work was funded as part of Wellcome Trust Strategic Award 105031/D/14/Z ‘Tracing early mammalian lineage decisions by single-cell genomics’ awarded to W. Reik, S. Teichmann, J. Nichols, B. Simons, T. Voet, S. Srinivas, L. Vallier, B. Göttgens and J. Marioni.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1863
    corecore