66 research outputs found

    The ANU WiFeS SuperNovA Program (AWSNAP)

    Full text link
    This paper presents the first major data release and survey description for the ANU WiFeS SuperNovA Program (AWSNAP). AWSNAP is an ongoing supernova spectroscopy campaign utilising the Wide Field Spectrograph (WiFeS) on the Australian National University (ANU) 2.3m telescope. The first and primary data release of this program (AWSNAP-DR1) releases 357 spectra of 175 unique objects collected over 82 equivalent full nights of observing from July 2012 to August 2015. These spectra have been made publicly available via the WISeREP supernova spectroscopy repository. We analyse the AWSNAP sample of Type Ia supernova spectra, including measurements of narrow sodium absorption features afforded by the high spectral resolution of the WiFeS instrument. In some cases we were able to use the integral-field nature of the WiFeS instrument to measure the rotation velocity of the SN host galaxy near the SN location in order to obtain precision sodium absorption velocities. We also present an extensive time series of SN 2012dn, including a near-nebular spectrum which both confirms its "super-Chandrasekhar" status and enables measurement of the sub-solar host metallicity at the SN site.Comment: Submitted to Publications of the Astronomical Society of Australia (PASA). Spectra publicly released via WISeREP at http://wiserep.weizmann.ac.il

    Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    Get PDF
    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of 56^{56}Ni to 56^{56}Co at early times, and the decay of 56^{56}Co to 56^{56}Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of 56^{56}Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in 56^{56}Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of 56^{56}Ni (MNiM_{Ni}) produced in the explosion. We then examine 56^{56}Ni yields for different SN Ia ejected masses (MejM_{ej} - calculated using the relation between light curve width and ejected mass) and find the 56^{56}Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), MNiM_{Ni} is clustered near MNiM_{Ni} ~ 0.4MM_\odot and shows a shallow increase as MejM_{ej} increases from ~1-1.4MM_\odot; at high stretch, MejM_{ej} clusters at the Chandrasekhar mass (1.4MM_\odot) while MNiM_{Ni} spans a broad range from 0.6-1.2MM_\odot. This could constitute evidence for two distinct SN Ia explosion mechanisms.Comment: 16 pages, 12 figures (main text), plus data tables in appendix. Spectra released on WISeREP. Submitted to MNRAS, comments welcom

    Results from a Fermilab neutrino beam dump experiment

    Full text link
    The flux of prompt neutrinos from a beam dump has been measured in an experiment at the Fermi National Accelerator Laboratory (E613). Assuming that the charm production has a linear dependence on atomic number and varies as (1−‖×‖)5 e−2mT, a model dependent cross section of 27±5μb/nucleon can be derived. For neutrino energies greater than 20 GeV, the flux of electron neutrinos with respect to muon neutrinos is 0.78±0.19. For neutrinos with energy greater than 30 GeV and p⟂ greater than 0.2, the flux of ν̄u compared to νμ is 0.96±0.22.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87363/2/100_1.pd

    Prompt Neutrino Results from Fermi Lab

    Full text link
    Results from a Fermi lab experiment to study prompt neutrino production are presented. Assuming the prompt neutrinos come from the decay of charmed mesons we find a total DD production cross section of approx. 20 μb/nucleon, in good agreement with previous CERN results. We find a ν/ν ratio and a νe/νμ of approx. 1.0. The energy and pT spectra of the prompt neutrinos are consistent with those expected from DD production. Limits on the production of supersymmetric particles have also been obtained.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87356/2/262_1.pd

    Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature

    Full text link
    Quantum mechanical phenomena, such as electronic coherence and entanglement, play a key role in achieving the unrivalled efficiencies of light-energy conversion in natural photosynthetic light-harvesting complexes, and triggered the growing interest in the possibility of organic quantum computing. Since biological systems are intrinsically heterogeneous, clear relations between structural and quantum-mechanical properties can only be obtained by investigating individual assemblies. However, single-molecule techniques to access ultrafast coherences at physiological conditions were not available so far. Here we show by employing femtosecond pulse-shaping techniques that quantum coherences in single organic molecules can be created, probed, and manipulated at ambient conditions even in highly disordered solid environments. We find broadly distributed coherence decay times for different individual molecules giving direct insight into the structural heterogeneity of the local surroundings. Most importantly, we induce Rabi-oscillations and control the coherent superposition state in a single molecule, thus performing a basic femtosecond single-qubit operation at room temperature

    SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion

    Get PDF
    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from −12 to +140 days with respect to the epoch of B-band maximum (tBmax). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ∼2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred 1800 Å) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca II and Si II absorption features, and a nearly constant photospheric velocity of the Si II λ6355 line at ∼12,000 km s-1 that began ∼5 days before tBmax. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Deep submarine infiltration of altered geothermal groundwater on the south Chilean Margin

    Get PDF
    Submarine groundwater discharge is increasingly recognized as an important component of the oceanic geochemical budget, but knowledge of the distribution of this phenomenon is limited. To date, reports of meteoric inputs to marine sediments are typically limited to shallow shelf and coastal environments, whereas contributions of freshwater along deeper sections of tectonically active margins have generally been attributed to silicate diagenesis, mineral dehydration, or methane hydrate dissociation. Here, using geochemical fingerprinting of pore water data from Site J1003 recovered from the Chilean Margin during D/V JOIDES Resolution Expedition 379 T, we show that substantial offshore freshening reflects deep and focused contributions of meteorically modified geothermal groundwater, which is likely sourced from a reservoir ~2.8 km deep in the Aysén region of Patagonia and infiltrated marine sediments during or shortly after the last glacial period. Emplacement of fossil groundwaters reflects an apparently ubiquitous phenomenon in margin sediments globally, but our results now identify an unappreciated locus of deep submarine groundwater discharge along active margins with potential implications for coastal biogeochemical processes and tectonic instability.publishedVersio

    A high‐statistics study of dimuon production by 400 GeV/c protons

    Full text link
    The reaction p+W→μ+μ−+X has been measured in a high‐statistics experiment using a 400 GeV/c proton beam, a magnetized beam dump, and a wide‐acceptance detector. Abbreviated results and a comparison with the Drell‐Yan Model are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87694/2/156_1.pd

    Effects of Reproductive Status, Social Rank, Sex and Group Size on Vigilance Patterns in Przewalski's Gazelle

    Get PDF
    Quantifying vigilance and exploring the underlying mechanisms has been the subject of numerous studies. Less attention has focused on the complex interplay between contributing factors such as reproductive status, social rank, sex and group size. Reproductive status and social rank are of particular interest due to their association with mating behavior. Mating activities in rutting season may interfere with typical patterns of vigilance and possibly interact with social rank. In addition, balancing the tradeoff between vigilance and life maintenance may represent a challenge for gregarious ungulate species rutting under harsh winter conditions. We studied vigilance patterns in the endangered Przewalski's gazelle (Procapra przewalskii) during both the rutting and non-rutting seasons to examine these issues.Field observations were carried out with focal sampling during rutting and non-rutting season in 2008-2009. Results indicated a complex interplay between reproductive status, social rank, sex and group size in determining vigilance in this species. Vigilance decreased with group size in female but not in male gazelles. Males scanned more frequently and thus spent more time vigilant than females. Compared to non-rutting season, gazelles increased time spent scanning at the expense of bedding in rutting season. During the rutting season, territorial males spent a large proportion of time on rutting activities and were less vigilant than non-territorial males. Although territorial males may share collective risk detection with harem females, we suggest that they are probably more vulnerable to predation because they seemed reluctant to leave rut stands under threats.Vigilance behavior in Przewalski's gazelle was significantly affected by reproductive status, social rank, sex, group size and their complex interactions. These findings shed light on the mechanisms underlying vigilance patterns and the tradeoff between vigilance and other crucial activities
    corecore