2,026 research outputs found

    Orbital Magnetism and Current Distribution of Two-Dimensional Electrons under Confining Potential

    Full text link
    The spatial distribution of electric current under magnetic field and the resultant orbital magnetism have been studied for two-dimensional electrons under a harmonic confining potential V(\vecvar{r})=m \omega_0^2 r^2/2 in various regimes of temperature and magnetic field, and the microscopic conditions for the validity of Landau diamagnetism are clarified. Under a weak magnetic field (\omega_c\lsim\omega_0, \omega_c being a cyclotron frequency) and at low temperature (T\lsim\hbar\omega_0), where the orbital magnetic moment fluctuates as a function of the field, the currents are irregularly distributed paramagnetically or diamagnetically inside the bulk region. As the temperature is raised under such a weak field, however, the currents in the bulk region are immediately reduced and finally there only remains the diamagnetic current flowing along the edge. At the same time, the usual Landau diamagnetism results for the total magnetic moment. The origin of this dramatic temperature dependence is seen to be in the multiple reflection of electron waves by the boundary confining potential, which becomes important once the coherence length of electrons gets longer than the system length. Under a stronger field (\omega_c\gsim\omega_0), on the other hand, the currents in the bulk region cause de Haas-van Alphen effect at low temperature as T\lsim\hbar\omega_c. As the temperature gets higher (T\gsim\hbar\omega_c) under such a strong field, the bulk currents are reduced and the Landau diamagnetism by the edge current is recovered.Comment: 15 pages, 11 figure

    Sex-specific fundamental and formant frequency patterns in a cross-sectional study

    Get PDF
    An extensive developmental acoustic study of the speech patterns of children and adults was reported by Lee and colleagues [Lee et al., J. Acoust. Soc. Am. 105, 1455-1468 (1999)]. This paper presents a reexamination of selected fundamental frequency and formant frequency data presented in their report for 10 monophthongs by investigating sex-specific and developmental patterns using two different approaches. The first of these includes the investigation of age- and sex-specific formant frequency patterns in the monophthongs. The second, the investigation of fundamental frequency and formant frequency data using the critical band rate (bark) scale and a number of acoustic-phonetic dimensions of the monophthongs from an age- and sex-specific perspective. These acoustic-phonetic dimensions include: vowel spaces and distances from speaker centroids; frequency differences between the formant frequencies of males and females; vowel openness/closeness and frontness/backness; the degree of vocal effort; and formant frequency ranges. Both approaches reveal both age- and sex-specific development patterns which also appear to be dependent on whether vowels are peripheral or non-peripheral. The developmental emergence of these sex-specific differences are discussed with reference to anatomical, physiological, sociophonetic and culturally determined factors. Some directions for further investigation into the age-linked sex differences in speech across the lifespan are also proposed

    Ecosystem resistance in the face of climate change: a case study from the freshwater marshes of the Florida Everglades

    Get PDF
    Shaped by the hydrology of the Kissimmee-Okeechobee-Everglades watershed, the Florida Everglades is composed of a conglomerate of wetland ecosystems that have varying capacities to sequester and store carbon. Hydrology, which is a product of the region’s precipitation and temperature patterns combined with water management policy, drives community composition and productivity. As shifts in both precipitation and air temperature are expected over the next 100 years as a consequence of climate change, CO2 dynamics in the greater Everglades are expected to change. To reduce uncertainties associated with climate change and to explore how projected changes in atmospheric CO2 concentration and climate can alter current CO2 exchange rates in Everglades freshwater marsh ecosystems, we simulated fluxes of carbon among the atmosphere, vegetation, and soil using the DAYCENT model. We explored the effects of low, moderate, and high scenarios for atmospheric CO2 (550, 850, and 950 ppm), mean annual air temperature (þ1, þ2.5, and þ4.28C) and precipitation (2, þ7, and þ14%), as predicted by the IPCC for the year 2100 for the region, on CO2 exchange rates in short- and long-hydroperiod wetland ecosystems. Under 100 years of current climate and atmospheric CO2 concentration, Everglades freshwater marsh ecosystems were estimated to be CO2-neutral. As atmospheric CO2 concentration increased and under climate change projections, there were slight shifts in the start and length of the wet season (1 to þ7 days) and a small enhancement in the sink capacity (by 169 to 573 g C m2 century1 ) occurred at both short- and longhydroperiod ecosystems compared to CO2 dynamics under the current climate regime. Over 100 years, rising temperatures increased net CO2 exchange rates (þ1 to 13 g C m2 century1 ) and shifts in precipitation patterns altered cumulative net carbon uptake by þ13 to 46 g C m2 century1 . While changes in ecosystem structure, species composition, and disturbance regimes were beyond the scope of this research, results do indicate that climate change will produce small changes in CO2 dynamics in Everglades freshwater marsh ecosystems and suggest that the hydrologic regime and oligotrophic conditions of Everglades freshwater marshes lowers the ecosystem sensitivity to climate change. Key word

    Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge

    Full text link
    The charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effective interaction for the spin degree of freedom in the long wavelength limit. The anomalous exponent may be determined by measuring nuclear spin relaxation rates in a narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B, Rapid communication

    Sigma-2 receptors as a biomarker of proliferation in solid tumours

    Get PDF
    Over the past several years, our group has provided considerable evidence that the expression of sigma-2 (σ2) receptors may serve as a biomarker of tumour cell proliferation. In these in vitro studies, σ2receptors were expressed 8–10 times more in proliferative (P) tumour cells than in quiescent (Q) tumour cells, and the extent and kinetics of their expression were independent of a number of biological, physiological and environmental factors often found in solid tumours. Moreover, the expression of σ2receptors followed both the population growth kinetics when Q-cells were recruited into the P-cell compartment and the proliferative status of human breast tumour cells treated with cytostatic concentrations of tamoxifen. However, these in vitro studies may or may not be indicative of what might occur in solid tumours. In the present study, the σ2receptor P:Q ratio was determined for the cells from subcutaneous 66 (diploid) and 67 (aneuploid) tumours grown in female nude mice. The σ2receptor P:Q ratio of the 66 tumours was 10.6 compared to the σ2receptor P:Q ratio of 9.5 measured for the 66 tissue culture model. The σ2receptor P:Q ratio of the 67 tumours was 4.5 compared to the σ2receptor P:Q ratio of ≈ 8 measured for the 67 tissue culture model. The agreement between the solid tumour and tissue culture data indicates that: (1) the expression of σ2receptors may be a reliable biomarker of the proliferative status of solid tumours and (2) radioligands with both high affinity and high selectivity for σ2receptors may have the potential to non-invasively assess the proliferative status of human solid tumours using imaging techniques such as positron emission tomography or single-photon emission computerized tomography. © 2000 Cancer Research Campaig

    Discovery of novel class of histone deacetylase inhibitors as potential anticancer agents

    Get PDF
    Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer

    Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067

    Get PDF
    PG 0014+067 is one of the most promising pulsating subdwarf B stars for seismic analysis, as it has a rich pulsation spectrum. The richness of its pulsations, however, poses a fundamental challenge to understanding the pulsations of these stars, as the mode density is too complex to be explained only with radial and nonradial low degree (l < 3) p-modes without rotational splittings. One proposed solution, for the case of PG 0014+067 in particular, assigns some modes with high degree (l=3). On the other hand, theoretical models of sdB stars suggest that they may retain rapidly rotating cores, and so the high mode density may result from the presence of a few rotationally-split triplet (l=1), quintuplet (l=2) modes, along with radial (l=0) p-modes. To examine alternative theoretical models for these stars, we need better frequency resolution and denser longitude coverage. Therefore, we observed this star with the Whole Earth Telescope for two weeks in October 2004. In this paper we report the results of Whole Earth Telescope observations of the pulsating subdwarf B star PG 0014+067. We find that the frequencies seen in PG 0014+067 do not appear to fit any theoretical model currently available; however, we find a simple empirical relation that is able to match all of the well-determined frequencies in this star.Comment: 19 pages, preprint of paper accepted for publication in The Astrophysical Journa

    Applications of Two-Body Dirac Equations to the Meson Spectrum with Three versus Two Covariant Interactions, SU(3) Mixing, and Comparison to a Quasipotential Approach

    Full text link
    In a previous paper Crater and Van Alstine applied the Two Body Dirac equations of constraint dynamics to the meson quark-antiquark bound states using a relativistic extention of the Adler-Piran potential and compared their spectral results to those from other approaches, ones which also considered meson spectroscopy as a whole and not in parts. In this paper we explore in more detail the differences and similarities in an important subset of those approaches, the quasipotential approach. In the earlier paper, the transformation properties of the quark-antiquark potentials were limited to a scalar and an electromagnetic-like four vector, with the former accounting for the confining aspects of the overall potential, and the latter the short range portion. A part of that work consisted of developing a way in which the static Adler-Piran potential was apportioned between those two different types of potentials in addition to covariantization. Here we make a change in this apportionment that leads to a substantial improvement in the resultant spectroscopy by including a time-like confining vector potential over and above the scalar confining one and the electromagnetic-like vector potential. Our fit includes 19 more mesons than the earlier results and we modify the scalar portion of the potential in such a way that allows this formalism to account for the isoscalar mesons {\eta} and {\eta}' not included in the previous work. Continuing the comparisons made in the previous paper with other approaches to meson spectroscopy we examine in this paper the quasipotential approach of Ebert, Faustov, and Galkin for a comparison with our formalism and spectral results.Comment: Revisions of earlier versio

    Resolution of Biphasic Binding of the Opioid Antagonist Naltrexone in Brain Membranes

    Full text link
    In synaptosomal membranes from rat brain cortex, in the presence of 150 m M NaC1, the opioid antagonist [ 3 H] naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 n M , respectively. Guanosine-5′-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [ 3 H] naltrexone. As shown by nonlinear least-squares analysis, the Μ opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [ 3 H] naltrexone binding, whereas the Δ-selective ligands [D- Pen 2 , D-Pen 5 ] enkephalin, ICI 174, 864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66340/1/j.1471-4159.1991.tb08288.x.pd

    Search for flavor-changing neutral currents and lepton-family-number violation in two-body D0 decays

    Get PDF
    Results of a search for the three neutral charm decays, D0 -> mu e, D0 -> mu mu, and D0 -> e e, are presented. This study was based on data collected in Experiment 789 at the Fermi National Accelerator Laboratory using 800 GeV/c proton-Au and proton-Be interactions. No evidence is found for any of the decays. Upper limits on the branching ratios, at the 90% confidence level, are obtained.Comment: 28 pages, 18 figures. Submitted to Physical Review
    corecore