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Abstract. Shaped by the hydrology of the Kissimmee-Okeechobee-Everglades watershed, the Florida

Everglades is composed of a conglomerate of wetland ecosystems that have varying capacities to sequester

and store carbon. Hydrology, which is a product of the region’s precipitation and temperature patterns

combined with water management policy, drives community composition and productivity. As shifts in

both precipitation and air temperature are expected over the next 100 years as a consequence of climate

change, CO2 dynamics in the greater Everglades are expected to change. To reduce uncertainties associated

with climate change and to explore how projected changes in atmospheric CO2 concentration and climate

can alter current CO2 exchange rates in Everglades freshwater marsh ecosystems, we simulated fluxes of

carbon among the atmosphere, vegetation, and soil using the DAYCENTmodel. We explored the effects of

low, moderate, and high scenarios for atmospheric CO2 (550, 850, and 950 ppm), mean annual air

temperature (þ1,þ2.5, andþ4.28C) and precipitation (�2,þ7, andþ14%), as predicted by the IPCC for the

year 2100 for the region, on CO2 exchange rates in short- and long-hydroperiod wetland ecosystems. Under

100 years of current climate and atmospheric CO2 concentration, Everglades freshwater marsh ecosystems

were estimated to be CO2-neutral. As atmospheric CO2 concentration increased and under climate change

projections, there were slight shifts in the start and length of the wet season (�1 to þ7 days) and a small

enhancement in the sink capacity (by�169 to�573 g C m�2 century�1) occurred at both short- and long-

hydroperiod ecosystems compared to CO2 dynamics under the current climate regime. Over 100 years,

rising temperatures increased net CO2 exchange rates (þ1 to 13 g C m�2 century�1) and shifts in

precipitation patterns altered cumulative net carbon uptake by þ13 to �46 g C m�2 century�1. While

changes in ecosystem structure, species composition, and disturbance regimes were beyond the scope of

this research, results do indicate that climate change will produce small changes in CO2 dynamics in

Everglades freshwater marsh ecosystems and suggest that the hydrologic regime and oligotrophic

conditions of Everglades freshwater marshes lowers the ecosystem sensitivity to climate change.

Key words: climate change; CO2 exchange rates; DAYCENT; ecosystem resistance; eddy covariance; Florida

Everglades.
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INTRODUCTION

The Florida Everglades is composed of a
conglomerate of wetland ecosystems that have
been shaped by the complex hydrology of south
Florida (Davis and Ogden 1994). Hydrology
drives wetland community composition, struc-
ture, productivity, soil development, and influ-
ences decomposition rates across these
ecosystems (Davis and Ogden 1994, Mitsch and
Gosslink 2007). The mosaic of seasonally fluctu-
ating hydrologic patterns has led to a range of
capacities to sequester and store carbon (C), and
may be important for ecosystem sensitivity. We
refer to ecosystem sensitivity as the magnitude of
a response to change, where low sensitivity
indicates that a response to an environmental
perturbation is small. Climate change projections
suggest shifts in both air temperature and
precipitation over the next 50 to 100 years
(Christensen et al. 2007, Stanton and Ackerman
2007, IPCC 2013), and when coupled with water
management decisions and human population
expansion in south Florida, these shifts may have
serious implications for Everglades hydrology
and ultimately the region’s C dynamics (Stanton
and Ackerman 2007).

The Everglades is expected to be vulnerable to
the impacts of climate change that, along with
anthropogenic controls, will initiate additional
alterations in water levels and inundation peri-
ods (Stanton and Ackerman 2007, IPCC 2013).
Future climate is dependent on atmospheric CO2

concentration, which is predicted to increase in
the range of 540 to 970 ppm by 2100 (Houghton
et al. 2001, Stanton and Ackerman 2007). In
combination, wet season precipitation is project-
ed to decrease by 5–10% (Christensen et al. 2007)
while annual precipitation may be altered by �2
to þ14% (IPCC 2013) and temperatures may
warm 1 to 4.28C (IPCC 2013). The change will
likely include larger convective storms and
greater intensity hurricanes (Allan and Soden
2008). The uncertainty and confidence in climate
change projections depends on the quantity,
quality, consistency of evidence (e.g., mechanistic
understanding, theory, data, and models) and the
degree of agreement among models (IPCC 2013).
Although climate change is expected to alter
vegetative communities and C dynamics within
the Everglades (Davis and Ogden 1994, Bush et

al. 1998, Todd et al. 2010), the range in climate
projections is wide, thus making estimates of
future C dynamics for the region even less
certain.

Anthropogenic activities have been shown to
reduce the capacity of ecosystems to cope with
disturbance and change (Jackson et al. 2001,
Scheffer et al. 2001, Elmqvist et al. 2003), which
could have significant implications for ecosystem
sensitivity to climate change and ultimately the
system’s C dynamics and sequestration capacity
(Cao and Woodward 1998, Riedo et al. 2000). The
greater Everglades system is highly modified by
water control structures that disconnect hydro-
logical dynamics from precipitation patterns
throughout the Kissimmee-Okeechobee-Ever-
glades watershed (Perry 2004). Efforts are cur-
rently underway to improve water flows
throughout Everglades National Park in areas
suffering from chronically low water levels
(Perry 2004). Fluctuations in hydric conditions
that alter ecosystem C storage or emission rates
might occur slowly, but can have a significant
long lasting effect on C pools. Using the
ecosystem model DAYCENT (Del Grosso et al.
2001), we aim to explore the effects of increasing
atmospheric CO2 concentration, temperature and
altered precipitation, independently and in com-
bination, to determine the relative impact of each
on current ecosystem CO2 exchange rates.

Limited experimental capabilities exist to
evaluate the complicated interactive controls on
ecosystem responses to multifactor drivers (Fuh-
rer 2003, Luo et al. 2008), although these effects
are critical to understand how climate change
impacts terrestrial ecosystems (Luo et al. 2008).
Ultimately, time and financial constraints limit
multifactor experiments (Luo et al. 2008), and
thus simulation models have been a useful tool to
investigate the effects of rising atmospheric CO2

concentration and climate change scenarios on
terrestrial ecosystems (Abdalla et al. 2010).
Ideally, models that simulate long-term changes
in C dynamics should link plant, soil and
atmospheric processes, and account for interac-
tions among effects (Riedo et al. 2000). The
DAYCENT model (Del Grosso et al. 2001) meets
these requirements, simulating ecosystem water,
C and nutrient dynamics (Parton et al. 1987,
Parton et al. 1988) for various native and
managed ecosystems (Del Grosso et al. 2002,
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Del Grosso et al. 2009, Abdalla et al. 2010).
DAYCENT simulates changes in C and nutri-

ent dynamics within and through the soil-plant-
atmosphere continuum in response to changes in
environmental conditions (i.e., air temperature,
precipitation and atmospheric CO2 concentra-
tion) and management practices (grazing, har-
vesting, burning, fertilizing, and irrigation; Del
Grosso et al. 2000). DAYCENT has been used to
successfully simulate ecosystem responses to
changes in climate (Parton et al. 1995, Luo et al.
2008, Savage et al. 2013), and to model gas fluxes
(CO2, CH4, N2O, NOx, N2). It has also been used
to model C and nutrient dynamics (N, P, S) in
shrublands (Li et al. 2006), forest (Hartman et al.
2007, Parton et al. 2010), crops (Del Grosso et al.
2002, Stehfest et al. 2007, Del Grosso et al. 2009,
Chang et al. 2013, Duval et al. 2013), and
temperate wetlands and grasslands (Luo et al.
2008, Morgan et al. 2004, Parton et al. 2007). By
capturing patterns in soil hydrology, soil thermal
regimes, and C dynamics (Chimner et al. 2002,
Cheng et al. 2013, Cheng et al. 2014), DAYCENT
has been used to effectively model C dynamics in
wetland ecosystems, which provides a strong
basis for using DAYCENT in Everglades fresh-
water marsh ecosystems.

Alterations to the Everglades hydrologic cycle
are expected with climate change, leaving C
pools and sequestration potential highly uncer-
tain. The goal of these model simulations is to
determine how CO2 exchange rates in Everglades
freshwater wetland ecosystems will change as a result
of rising atmospheric CO2 concentration and associ-
ated climate projections. The model projections are
important for understanding Everglades vulner-
ability to climate change, and to indicate how
factors interact to influence the CO2 sequestering
capacity of Everglades ecosystems. Wetland
ecosystem sensitivity to climate change will have
a significant impact on the global C cycle,
considering that 535 Gt C are stored in wetland
soils as peat (Mitsch and Gosslink 2007) and this
sequestered C is vulnerable to changes in
hydrologic cycles.

Ecosystem sensitivity to ‘‘future’’ conditions
can be used as an indication of the vulnerability
of Everglades C pools. Increased atmospheric
CO2 concentration should enhance ecosystem
productivity (Nowak et al. 2004, Ainsworth and
Long 2005) by reducing nutrient limitations

(Hocking and Meyer 1991, Drake and Gon-
zàlez-Meler 1997, Ainsworth and Long 2005)
and photorespiration in C3 species (Bowes 1993).
Holding atmospheric CO2 concentration con-
stant, wetland ecosystem productivity and CO2

exchange rates are driven largely by hydrology
(Schedlbauer et al. 2010), nutrient dynamics, light
and temperature (Schedlbauer et al. 2010).
Precipitation drives hydrological patterns (e.g.,
water levels) and the onset and start of seasons
(Malone et al. 2014b). Water levels above the soil
surface influence soil temperature, oxygen avail-
ability and respiratory processes, often leading to
a decline in ecosystem respiration. Productivity
increases with higher water availability until
water levels interfere with exposed leaf area
and oxygen availability in the soil. Low ecosys-
tem sensitivity would suggest that C pools are
less vulnerable to climate change and the future
structure and function of ecosystems would be
more heavily influenced by changes in distur-
bance regimes and sea level rise.

MATERIALS AND METHODS

Model description
To determine the effect of projected climate

change on Everglades freshwater marshes we
used DAYCENT_Photosyn (Savage et al. 2013), a
modified version of the DAYCENT model (www.
nrel.colostate.edu/projects/daycent/). DAYCENT_
Photosyn models key processes for evaluating
wetland ecosystem CO2 exchange rates by simu-
lating soil water and thermal dynamics, plant
production and allocation of net primary produc-
tion (NPP), decomposition of litter and soil
organic matter, mineralization/immobilization
and plant uptake of nutrients, and CH4 oxidation
and methanogenesis. DAYCENT_Photosyn con-
tains the SIPNET photosynthesis model (Bras-
well et al. 2005, Sacks et al. 2006, 2007), which is a
simplified Farquhar photosynthesis and respira-
tion submodel. In DAYCENT, C allocation in the
NPP submodel is a function of plant phenology,
water and nutrient stress (Parton et al. 2010), soil
C and nutrient dynamics (Parton et al. 2001),
trace gas flux (Del Grosso et al. 2000), and soil
water and temperature (Parton et al. 1998,
Eitzinger et al. 2000; Fig. 1). The key process
influencing soil C dynamics is soil organic matter
decomposition, which is controlled by soil
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moisture/oxygen concentrations, temperature
and pH. DAYCENT assumes that NPP and
organic matter decomposition rates increase as
soil water content increases until optimum water
content is reached, with the optimum higher for
NPP than for decomposition. Analogously, NPP
and decomposition are influenced by tempera-
ture, and the sensitivity of the temperature
response is different for each process. Optimum,
minimum, and maximum temperatures for NPP
vary with vegetation type whereas no minimum
or maximum temperatures for decomposition are
assumed, although the rate at which decompo-

sition increases declines as temperature increas-

es. Both NPP and decomposition are also limited

by mineral N availability. As CO2 concentrations

increase, DAYCENT allows water-use efficiency

to increase by reducing transpiration, so that

water savings are immediately reflected in soil

moisture. Increases in NPP under rising atmo-

spheric CO2 concentration using DAYCENT arise

from the combined direct effect of CO2 on NPP,

indirect effects of soil moisture on NPP, and

reduced N-limitation to NPP due to enhanced

soil-N mineralization on moister soils.

Fig. 1. Conceptual diagram of the DAYCENT_Photosyn ecosystem model. DAYCENT incorporates a soil

organic matter (SOM), net primary productivity (NPP) and land surface sub-model. In the SOM sub-model,

decomposition is microbially mediated with an associated microbial respiration CO2 loss that depends on soil

texture. The NPP sub-model uses relationships between climatic factors and available soil nutrients to calculate

plant production and allocation of nutrients to live aboveground and belowground vegetation. The land surface

sub-model simulates water flow through the plant canopy, litter, and soil profile (Parton et al. 1998, Eitzinger et

al. 2000).

v www.esajournals.org 4 April 2015 v Volume 6(4) v Article 57

MALONE ET AL.



DAYCENT parameterization
DAYCENT was parameterized for two sub-

tropical Everglades ecosystems with contrasting
hydroperiods, Taylor Slough (TS) and Shark
River Slough (SRS). The short-hydroperiod
marsh, TS, is inundated 4 to 6 months each year
(June to November) and is characterized by
shallow marl soils (;0.14 m; Duever et al. 1978)
and relatively uniform vegetation co-dominated
by a C3 sedge (Cladium jamaicense Crantz.) and a
C4 grass (Muhlenbergia capillaris Lam.). The long-
hydroperiod marsh, SRS, is inundated ;12
months each year and is characterized by peat
soils (;1 m thick) with ridge and slough micro-
topography (Duever et al. 1978). Ridges are
dominated by C. jamaicense and sloughs are
dominated by Eliocharis cellulosa and Nymphaea
odorata. Periphyton also exists on submerged
structures at both sites and as floating mats at
SRS. Both sites are also P limited, have year-
round growing seasons and experience wet and
dry seasons that are produced by precipitation
patterns in the south Florida region (Davis and
Ogden 1994). Taylor Slough occupies ;14,398 ha
while Shark River Slough covers 88,811 ha of the
609,447 ha Everglades National Park. It is
important to note that freshwater marsh ecosys-
tems do not dominate the entire area of TS and
SRS. For a more detailed site description, see
Davis and Ogden (1994). Vegetation and soil
data used in the model were measured at Florida
Coastal Everglades Long Term Ecological Re-

search (FCE-LTER) sites TS-1b (25826016.500 N,
80835 040.68 00 W) and SRS-2 (25833 06.72 00 N,
80846057.3600 W) and made available through
the FCE-LTER data portal (http://fcelter.fiu.edu/
data/) (Table 1).

Long-term weather data were obtained from
the nearest weather station, NCDC Royal Palm
Ranger Station, where NOAA Daily Surface
Meteorological Data were available from 1963
to 2011 (Fig. 2). Data from TS and SRS in 2012
was added to the weather file to aid model
validation, creating a 50-year weather file for
each site. In the Everglades, complex annual,
seasonal, and intra-seasonal precipitation pat-
terns exist, which are caused by global climate
cycles (Davis and Ogden 1994). In order to
maintain the natural variability in observed
weather data and prevent unrealistic patterns in
precipitation, weather data variability in climate
change simulations (2000 to 2100) was based on
observed weather data 1963 to 2012.

To parameterize DAYCENT, vegetation and
water dynamics were simplified. The DAYCENT
model requires a representative species that is
used to characterize the vegetative components
of the model. In terms of biomass and density, C.
jamaicense dominates both TS and SRS (Davis
and Ogden 1994), and thus C. jamaicense was
used to characterize the vegetation parameters.
Current site leaf area and P conditions were also
used in the model and assumed constant.

To capture the effects of inundation in the

Table 1. DAYCENT site characteristics for Taylor Slough (TS) and Shark River Slough (SRS). Site data was

obtained from the Florida coastal Everglades Long-term Ecological Research (FCE LTER sites TS-1 and SRS-2),

AmeriFlux and the literature.

Parameters (units) TS SRS Source

Site latitude 25826016.500 N 2583306.7200 N http://ameriflux.ornl.gov
Site Longitude 80835040.6800 W 80846057.3600 W http://ameriflux.ornl.gov
C:N ratio (AG/BG) 39.2 AG/46.8 BG 39.2 AG/46.8 BG Childers and Troxler 2011a, b, c, d,

2013a, b, Reddy et al. 1999
Root: shoot ratio 60:40 60:40 Schedlbauer et al. 2010, Miao and Sklar

1998
Lignin content (AG/BG; %) 13% AG 34% soil Reddy et al. 1999
Sand, silt, and clay (%) 80–15-5 80–15-5 Sandy loam (Dade County Soil Survey

1996)
Bulk density (g/cm3) 0.56 0.066 White and Reddy 2001
Rooting depth (cm) 15 30
N deposition (wet/dry; mg/l N) 0.73 (wet)/

0.07–0.25 (dry)
0.73 (wet)/
0.07–0.25 (dry)

Steward 1975

C in SOM (mg C/g soil) 166 409 Childers 2006 (TS), White and Reddy
2001 (SRS)

N in SOM (mg N/g soil) 5.81 25.3 Childers 2006 (TS), White and Reddy
2001 (SRS)
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DAYCENT model we used the program’s irriga-
tion option, and indicated when and for how
long sites were inundated. Changes in soil water
content (available pore space; Kelly et al. 2000)
affect O2 levels, which influence heterotrophic
decomposition in the DAYCENT model. Simula-
tions showed that increasing soil water content
reduces decomposition rates 10–30% of the
maximum rates when soils are saturated. The
irrigation option keeps soils saturated, which
influences soil oxygen levels, but does not
include the effects of standing water on exposed
leaf area. To incorporate the effects of standing
water on the productivity of emergent vegetation
(Jimenez et al. 2012), we adjusted the optimum
and maximum temperatures for production and
altered the coefficients used to calculate water
stress on vegetation production. We matched
historical seasonal water levels at each site; at TS,
the system was inundated throughout the wet
season, while SRS remained inundated during
the entire year. The start and duration of the wet
season were determined from fluctuations in the
Bowen Ratio (b) at TS and SRS (2009–2012;
Malone et al. 2014a). The length of the wet season
was determined assuming a linear model be-
tween cumulative precipitation (January through
March) and wet season length derived from b
(Fig. 3A) at TS and SRS (separately) using 2009–
2012 data (http://ameriflux.ornl.gov). We also
determined the linear relationship between the

wet season length and the first day of the wet
season (Fig. 3B; Malone et al. 2014b). These
correlations were then used to incorporate the
effect of surface flows on ecosystem productivity
and soil water availability. This method was
effective in that it allowed seasons to fluctuate
with precipitation patterns, and permitted sea-
sons to vary with climate change. However it
does not consider the effects of water depth or
any changes in water levels that occur as a result
of water management activities, and assumes
that relationships between precipitation and
season length and durations that occurred over
a relatively short time frame (2009–2012) were
appropriate in the past and in the future under
climate change.

Although both TS and SRS experience similar
weather, variations in soil water availability and
the effect of temperature and moisture on
potential productivity resulted in dissimilarities
between model parameterization at the two sites.
Using observed ecosystem CO2 exchange rates to
parameterize temperature and moisture effects
on potential productivity allowed us to account
for the presence of co-dominant and subdomi-
nant species that also contribute to ecosystem
CO2 exchange. Gross ecosystem exchange (GEE)
and net ecosystem exchange (NEE) rates for TS
(TS-1b) and SRS (SRS-2) from 2009 to 2011 were
used to determine maximum potential produc-
tion, and the effects of temperature and moisture

Fig. 2. Long-term daily weather data from the NCDC Royal Palm Ranger Station from 1963 to 2012. In climate

change simulations weather data variability during 2000 to 2100 was based on variability at the Royal Palm

weather station during 1963 to 2011 and weather data from TS and SRS in 2012.
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on production. Maximum potential production,
which is a function of solar radiation, was greater
in the dry season compared to the wet season
and greater for TS compared to SRS. Potential
production (g C m�2 month�1) is a function of the
maximum production defined, and the scalars
for the effects of temperature, moisture, and
shading. In Everglades freshwater marsh ecosys-
tems the effect of temperature on potential
production differed by site and seasonally. The
optimum temperature for production was higher
at SRS than at TS and higher during the summer-
wet season (358C and ;37.58C at TS and SRS,
respectively) than in the winter-dry season (278C
and 308C at TS and SRS, respectively). The
coefficients used to determine the effect of water
stress on production were similar for both TS and
SRS, though the effect of water stress was slightly
greater at TS during the wet season.

DAYCENT validation
To examine the model’s ability to adequately

characterize the study sites, we ran DAYCENT,
parameterized for each site, with weather data
collected from TS-1b and SRS-2 in 2012 and
compared modeled versus observed soil volu-
metric water content (VWC), soil temperature
(Tsoil, 8C) and CO2 exchange rates (i.e., NEE,

ecosystem respiration [Reco], and GEE). Using
methods similar to Veldkamp and O’Brien (2000),
observed soil volumetric water content (VWC,
%) was calculated from site-specific equations for
soil conditions and from the dielectric constant
using two soil moisture sensors (CS616, Camp-
bell Scientific Inc.) buried between 0 and 20 cm
soil depth at each site. Observed soil temperature
(Tsoil, 8C) was measured at 5 cm depths at two
locations within each site using insulated ther-
mocouples (Type-T, Omega Engineering, Stam-
ford, CT). Observed VWC, Tsoil and CO2

exchange rates (NEE, Reco, and GEE) were
obtained from the eddy covariance tower sites
at TS (TS-1b) (Schedlbauer et al. 2010, Sched-
lbauer et al. 2011, Jimenez et al. 2012) and SRS
(SRS-2) (Jimenez et al. 2012). All observed data is
available through AmeriFlux (http://ameriflux.
ornl.gov).

Measured and simulated outputs were evalu-
ated using the coefficient of determination (R2)
and bias. Bias was quantified via a linear
regression of simulated versus measured values.
Average bias is small when slopes are near 1 and
intercepts are near 0, but a thorough examination
of modeled values must be made to appropri-
ately evaluate patterns in over- and under-
estimation for the range of data.

Fig. 3. Wet season length and the start of the wet season at TS and SRS were estimated with data from 2009 to

2012. First, the linear relationship between (A) wet season length and precipitation (mm m�2) January to March

was estimated, and then the relationship between (B) wet season length and the start of the wet season was

determined.
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Climate change simulations
These climate change simulations do not

define the future of freshwater marsh ecosys-
tems, but describe how the current system would
respond to climate change projections using
simplified versions of Everglades short- and
long- hydroperiod freshwater marsh ecosystems.
A 2000-year equilibrium simulation, under recent
climate (380 ppm of CO2, and using long-term
weather data) was conducted before model
validation and climate projection simulations so
that simulations would start at quasi-equilibrium
(Pepper et al. 2005). This approach allowed us to
attribute ecosystem responses wholly to climate
change and thereby avoid any confounding
response from a non-equilibrium state.

Following parameterization and validation, we
ran the model for 100 years (1) under climate
change projections, and (2) maintaining recent
CO2 concentration (380 ppm) and observed air
temperature and precipitation patterns (1963 to
2012; NOAA Daily Surface Meteorological Data)
in the Everglades region, for comparison. To
examine the effects of rising atmospheric CO2

concentration and climate change projections we
simulated climate change projections by increas-
ing atmospheric CO2 concentration and temper-
ature and altering precipitation patterns
individually and in combination for each of the
two sites. The same weather data used for the
present-day simulation were altered by applying
additive scalars to adjust atmospheric CO2

concentration and temperature and scalar multi-
pliers to adjust precipitation seasonally and
annually to simulate climate change (Fig. 4).
Atmospheric CO2 concentration, temperature,
and precipitation were altered gradually while
conserving daily (high frequency) variability
(Parton et al. 1995, McMurtrie et al. 2001). We
explored a low, moderate, and high scenario for
atmospheric CO2 concentration (550, 850, and
950 ppm, respectively: EPA and IPCC 2007) and
each climate driver: mean annual air temperature
(þ1, þ2.5, and þ4.28C; IPCC 2013) and precipita-
tion (�2, þ7, and þ14%; IPCC 2013) (Fig. 4). We
also incorporated the seasonal shifts in temper-
ature and precipitation that are expected for this
region (Christensen et al. 2007, Stanton and
Ackerman 2007). Projected temperature change
was applied to the daily minimum temperatures
in the dry season (winter months), while tem-

perature increases were applied to maximum
temperatures in the wet season (Fig. 4D, E)
(Christensen et al. 2007). The annual distribution
of precipitation was altered by reducing wet
season precipitation by 10% (Fig. 4D–F). When
applied together, atmospheric CO2 concentra-
tion, temperature, and altered precipitation pat-
terns approximate the IPCC 2100 climate change
projections for the Everglades region. While
climate projections also suggest increased hurri-
cane intensity (IPCC 2013) and more frequent
heat waves (Stanton and Ackerman 2007),
including these potentially important changes
was beyond the scope of this study. We examined
the effect of elevated atmospheric CO2 concen-
tration and altered weather by comparing cumu-
lative CO2 exchange rates (NEE, Reco, and GEE)
over 100 years (2001 to 2100) to cumulative rates
under current conditions.

RESULTS

DAYCENT validation
DAYCENT simulated daily Tsoil and VWC

values did not closely match that of the observed
data, although monthly average DAYCENT
values were comparable to observed average
values at TS and SRS (Fig. 5). At both sites the
average difference between daily observed and
modeled Tsoil and VWC was less than 0.978C and
0.007, respectively. Monthly average fluctuations
in Tsoil were slightly underestimated at both TS
(R2¼ 0.98) and at SRS (R2¼ 0.99), likely the result
of increasing water levels at each site. The soil
VWC was underestimated at TS once the site was
inundated (;0.025% on average), and slightly
over-estimated at SRS in the wet season (;0.03%
on average). Discrepancies in VWC at TS were a
result of differences between observed and
modeled inundation. Determined by precipita-
tion patterns, simulated inundation occurred
before the site was actually inundated at TS,
resulting in higher simulated VWC than ob-
served (Fig. 5C). Once the site actually became
inundated, model performance improved. Dis-
crepancies in VWC and Tsoil suggest that DAY-
CENT could be improved in wetland ecosystems
by incorporating water depth above the soil
surface and the effect of water depth on soil
water content and temperature.

DAYCENT weakly captured fluctuations in
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daily CO2 exchange rates, though monthly
estimates were very similar to those observed
and previously reported for NEE, Reco and GEE
at TS and SRS for 2008 to 2009 (Jimenez et al.
2012). Atmospheric convention is used for CO2

exchange rates, where a positive value denotes a
loss of C from the ecosystem. At TS, DAYCENT
captured fluctuations in NEE (R2¼0.80) and GEE
(R2 ¼ 0.94), though daily fluctuations in Reco (R2

¼ 0.65) were often slightly over-estimated (Fig.
6A). At SRS, NEE was over estimated in the dry
season and during transition periods as a result
of small overestimations in both Reco (R2 ¼ 0.68;
Fig. 6B) and GEE (R2 ¼ 0.70; Fig. 6C). On a
monthly basis, DAYCENT simulated NEE, Reco

and GEE were realistic at both sites and DAY-
CENT captured fluctuation in GEE and NEE
much better than it did Reco.

Under recent atmospheric CO2 concentration
and climate, NEE fluctuated around a null
balance with a range of 6100 g C m�2 yr�1 at
both sites. Reco ranged from ;200 to 500 g C m�2

yr�1 at TS and SRS, whereas GEE ranged from

�200 to �500 g C m�2 yr�1, though rates at TS
were higher on average. Cumulatively at 100
years, both TS (�30 g C m�2 century�1) and SRS
(�5 g C m�2 century�1) were very small sinks for
CO2, and represent a potential accumulation of
0.33 tons C ha�1 century�1 at TS and 0.05 tons C
ha�1 century�1at SRS. These results suggest
freshwater marsh ecosystems are near neutral
for CO2 loss versus gain over 100 years.

Main effects of climate change scenarios
Rising atmospheric concentration of CO2 re-

sulted in the greatest change in NEE, Reco, and
GEE at both TS and SRS (Table 2, Figs. 7 and 8).
At TS cumulative NEE declined substantially
with elevated CO2 concentration compared to
simulations under current climate (380 ppm).
Long-term average annual NEE was �2.0, �4.8
and �5.6 g C m�2 yr�1 in the low, intermediate
and high scenarios, respectively, compared to
�0.30 g C m�2 yr�1 under current climates at TS.
Cumulative Reco at TS increased progressively by
1755.2, 7217.8 and 8245.8 g C m�2 century�1

Fig. 4. Climate change scalars for (A) elevated atmospheric CO2 concentration, (B) air temperature, and (C)

precipitation. The distributions for (D) minimum temperature, (E) maximum temperature and (F) precipitation

were modified to match projected seasonal change.
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under the low, moderate and high scenarios, and
similar to Reco, cumulative GEE at TS declined
(higher CO2 uptake) relative to current condi-
tions by approximately equal and opposite
amounts.

At SRS elevated atmospheric concentration
also enhanced net CO2 uptake. At 550, 850 and
950 ppm of CO2, cumulative NEE decreased by
176.3, 502.1 and 573.3 g C m�2 century�1,
respectively, compared to cumulative NEE at
380 ppm of CO2 over 100 years (Table 2, Fig. 8A).
Under these scenarios, the long-term average
annual NEE was�1.8,�5.0 and�5.7 g C m�2 yr�1

at low, medium, and high, respectively. Similar to
TS, at SRS cumulative Reco increased under the
low, medium, and high scenarios while GEE
decreased by nearly equal and opposite amounts.

Changes in temperature alone resulted in very
small changes in CO2 exchange rates of Ever-
glades ecosystems by causing slight shifts in the
ratio of GEE: Reco. At TS, a 1, 2.5 and 4.28C
increase in mean annual temperature led to
increased NEE (lower CO2 uptake) by 1.3, 3.7
and 6.6 g C m�2 century�1 (Table 2; Fig. 7B).

Cumulative Reco decreased progressively by 2.5,
6.7 and 11.7 g C m�2 century�1 with increased
temperatures, while GEE increased by 3.8 to 18.3
g C m�2 century�1. At SRS, NEE decreased by 3.1
to 13.0 g C m�2 century�1 as a mean annual
temperature increased by 1, 2.5 and 4.28C,
respectively (Table 2, Fig. 8A). Cumulative Reco

decreased by 17.2 to 73.9 g C m�2 century�1, and
GEE increased by 20.3 to 86.9 g C m�2 century�1

as a mean annual temperature increased at SRS.
Changes in precipitation of �2, þ7, and þ14%

altered the length of seasons by�1, 4, and 7 days
on average, respectively. A 2% decrease in annual
precipitation, which was weighted to reduce wet
season precipitation more than in the dry season,
increased cumulative NEE by 13.0 g C m�2

century�1 at TS, while no change in cumulative
NEE was found at SRS (Table 2). As mean annual
precipitation increased by 7 and 14%, net stored
CO2 increased by 20.3 and 41.8 g C m�2

century�1, respectively, at TS (Fig. 7C). A change
in precipitation of�2,þ7 andþ14% at TS altered
cumulative Reco by �1105.0, �220.1, and 432.9 g
C m�2 century�1, respectively. At TS, cumulative

Fig. 5. Observed versus modeled soil temperature at (A) TS and (B) SRS, and soil volumetric water content

(VWC) at (C) TS and (D) SRS.
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GEE was altered by�1105.0,�220.1, and 432.9 g

C m�2 with a �2 and þ7 and þ14% change in

mean annual precipitation. At SRS, changes in

mean annual precipitation had a smaller impact

on CO2 exchange rates. A change in mean annual

precipitation of�2, 7 and 14% shifted NEE by 0,

�21.03, and�46.1 g C m�2 century�1, respective-

ly. Reco at SRS increased by 5.4, 147.6, and 423.3 g

C m�2 century�1, and GEE shifted by 5.4,�115.8,
and�469.4 g C m�2 century�1 with a�2,þ7 and

þ14% increase in annual precipitation, respec-

tively.

Interactive effects of climate change scenarios

Simultaneous changes in CO2 concentration,

temperature, and precipitation modified ecosys-

Fig. 6. Observed (solid) versus modeled (hollow) CO2 exchange rates (NEE, Reco and GEE) at TS (A) and SRS

(B). Atmospheric convention is used here and positive numbers indicate a loss of C to the atmosphere.
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tem CO2 exchange rates (Table 2, Fig. 9). An
increase in CO2 concentration (550 ppm), com-
bined with a 18C rise in annual temperature and
2% decrease in annual precipitation led to 156.8 g
C m�2 century�1 increase in cumulative NEE,
2092.4 g C m�2 century�1 increase in cumulative
Reco and a 2249.2 g C m�2 century�1 decrease in
GEE at TS. At SRS, cumulative NEE decreased by
160.5 g C m�2 century�1 (Table 2, Fig. 9B), while
cumulative Reco increased 2001.4 g C m�2

century�1 and GEE declined by 2162.0 g C m�2

century�1. In the second scenario, atmospheric
CO2 concentration rose to 850 ppm, mean annual
temperatures increased by 2.58C, and mean
annual precipitation increased by 7%. At TS
cumulative NEE, Reco, and GEE changed by
�468.1, 7323.5, and �7323.5 g C m�2 century�1,
respectively. At SRS, cumulative NEE, Reco and
GEE were enhanced by �509.7, 5666.8, and
�6176.5 g C m�2 century�1, respectively. The
most extreme scenario explored included an
atmospheric CO2 concentration of 950 ppm, a
4.28C increase in mean annual temperature, and a
14% increase in annual precipitation. At TS, this
high scenario led to a�544.4, 9279.4, and�9279.4
g C m�2 century�1 change in cumulative NEE,
GEE, and Reco respectively. At SRS, this high
scenario led to a�557.7, 6776.4, and�7334.0 g C
m�2 century�1 change in cumulative NEE, GEE,
and Reco respectively. Climate change projections
led to a change in potential C sequestration of

1.7, 5.2 and 6.0 tons C ha�1 century�1 at TS and
1.8, 5.6 and 6.1 tons C ha�1 century�1 with the
low, intermediate and high scenarios, respective-
ly.

DISCUSSION

Climate change is considered a major threat to
species survival and ecosystem integrity (Hulme
2005, Erwin 2009). Occurring within the transi-
tion zone between aquatic and terrestrial envi-
ronments, wetlands ecosystems are considered to
be among the most vulnerable ecosystems to
climate change (Burkett and Kusler 2000) as a
result of its effects on wetland hydrology and
temperature (Ferrati et al. 2005, Erwin 2009).
Everglades ecosystems are projected to experi-
ence large shifts in ecosystem structure and
function by 2100 (Stanton and Ackerman 2007).
While projections for temperature and precipita-
tion are within the natural range of conditions
observed in the region, ecosystem CO2 exchange
rates were modified by higher winter minimum
and summer temperatures, and by greater dry
season precipitation. At both sites, increasing
atmospheric CO2 concentration caused the great-
est changes in GEE and Reco rates; however,
because increases in these fluxes were of similar
magnitude but opposite in sign, the effect on net
CO2 exchange was very small. These results
suggest that climate change will lessen seasonal

Table 2. The change in cumulative NEE, Reco, and GEE (g C m�2 century�1) as a result of rising atmospheric CO2

concentration, increasing mean annual temperature, and variations in annual precipitation individually and in

combination (IPCC 2013 projects).

Scenario

TS SRS

D NEE D Reco D GEE D NEE D Reco D GEE

CO2 only (ppm)
Low (550) �169 1755 �1925 �176 2271 �2447
Moderate (850) �454 7218 �7672 �502 5485 �5987
High (950) �530 8646 �9176 �573 6464 �7037

Temperature only (8C)
Low (1) 1.3 �2.5 3.8 3.1 �17.3 20.4
Moderate (2.5) 3.7 �6.7 10.4 7.8 �43.5 51.3
High (4.5) 6.6 �11.7 18.3 13.0 �73.9 86.9

Precipitation only (%)
Low (�2) 13.0 �1105 �1105 0.0 5.4 5.4
Moderate (7) �20.3 �220 �220 �21.0 148 �116
High (14) �42 433 433 �46 423 �469

IPCC
Low �157 2092 �2093 �161 2001 �2162
Moderate �468 7324 �7324 �510 5667 �6177
High �544 9279 �9279 �558 6776 �7334
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differences in precipitation patterns by reducing

wet and increasing dry season precipitation and

results suggest that Everglades ecosystems are

more resilient to change than previously thought.

This low ecosystem sensitivity is likely the result

of hydrology and nutrient limitations.

Main and interactive effects of multifactor
climate change

As an important limiting factor for the growth

and productivity of many species (Vu et al. 1997),

terrestrial ecosystems are currently and have

been responding to rising atmospheric CO2

concentration (Gifford 1980, Ciais et al. 1995,

Keeling et al. 1995, Drake and Gonzàlez-Meler

1997). The biochemical basis of this response is

well established (Farquhar et al. 1980) and

indicates that below 600 ppm atmospheric CO2

is generally limiting (Nowak et al. 2004), and

many ecosystems will respond to higher concen-

trations. This was the case for TS and SRS and led

to greater C uptake and release rates. Photosyn-

thesis (Long and Drake 1992) and transpiration

(Heath 1948, Drake and Gonzàlez-Meler 1997)

have long been known to respond to changes in

atmospheric CO2 concentration. Elevated CO2

concentration reduces photorespiration rates

(Bowes 1993) in C3 species and enhances light

Fig. 7. The effect of elevated atmospheric CO2 concentration (550 ppm, 850 ppm and 950 ppm) on cumulative

(A) NEE, (B) Reco and (G) GEE, at TS. The influence of rising temperatures (18C, 2.78C and 4.28C) on cumulative

(B) NEE, (E) Reco and (H) GEE and shifts in seasonal and annual precipitation patterns (�2%,þ7% andþ14%) on

cumulative (C) NEE, (F) Reco and (I) GEE. Atmospheric convention is used here and positive numbers indicate a

loss of C to the atmosphere. All simulations were compared to current weather and atmospheric CO2

concentration (red line
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(Drake and Gonzàlez-Meler 1997, Ainsworth and
Long 2005), nutrient (Hocking and Meyer 1991,
Drake and Gonzàlez-Meler 1997) and water use
efficiency (Drake and Gonzàlez-Meler 1997) in
plants. Ecosystem respiration rates also respond to
rising atmospheric CO2 concentration (Gonzàlez-
Meler et al. 1996, Drake and Gonzàlez-Meler 1997)
through the direct inhibition of respiratory enzyme
activity (e.g., cytochrome c oxidase and succinate
dehydrogenase, Drake and Gonzàlez-Meler 1997).
Rising atmospheric CO2 concentration generally
reduces dark respiration rates (Drake and Gonza-
lez-Meler 1997) compared to GEE rates.

A small increase in net CO2 uptake at both

Everglades sites occurred in response to elevated
atmospheric CO2, suggesting that ecosystem

responses at both TS and SRS will provide a
negative feedback to global warming and will

maintain current soil C pools. Compared to SRS,
TS had greater CO2 uptake rates, although SRS

was most sensitive to changes in CO2 concentra-
tion. Variations in site sensitivity were due to
differences in leaf area. At SRS, leaf area is

greater than at TS, and studies have shown that
while rising CO2 concentration alters productiv-

ity rates, leaf area often remains unchanged
(Drake and Gonzàlez-Meler 1997). Although
both sites fluctuate between being a very small

Fig. 8. The effect of elevated atmospheric CO2 concentration (550 ppm, 850 ppm and 950 ppm) on cumulative

(A) NEE, (D) Reco and (G) GEE, at SRS. The influence of rising temperatures (18C, 2.78C and 4.28C) on cumulative

(B) NEE, (E) Reco and (H) GEE and shifts in seasonal and annual precipitation patterns (�2%,þ7% andþ14%) on

cumulative (C) NEE, (F) Reco and (I) GEE. Atmospheric convention is used here and positive numbers indicate a

loss of C to the atmosphere. All simulations were compared to current weather and atmospheric CO2

concentration (red line).
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sink, source, or near neutral annually (Jimenez et

al. 2012, Malone et al. 2014b), rising CO2

concentration may cause an enhancement in the

sink potential of Everglades freshwater marsh

ecosystems by improving resource use efficien-

cies, though the response to CO2 enrichment will

be limited by low P levels.

Climate change is expected to have the

strongest and most immediate effect on plant

phenology (Forrest and Miller-Rushing 2010) and

physiology. Significant changes in physiology

have been observed in response to higher

temperatures, affecting photosynthetic rates of

C3 plants (Long 1991), which is a dominant mode

of photosynthesis at both sites. Higher tempera-

tures lower the activation state of Rubisco (Kobza

and Edwards 1987, Holaday et al. 1992) and both

the solubility and the specificity for CO2 relative

to O2 (Jordan and Ogren 1984, Brooks and

Farquhar 1985, Long 1991). At the ecosystem

level, variations of only a few degrees centigrade

are sufficient to affect gas fluxes (Hirano et al.

2009). Compared to CO2 concentration, changes

in temperature had a much smaller impact on

CO2 exchange rates at both TS and SRS and

sensitivity to changes in temperature was similar

at both sites. An increase in temperature, up until

optimal conditions, often leads to an increase in

metabolic activity (Medlyn et al. 2002, Lambers

et al. 2008), although when temperatures rise

Fig. 9. The effect of climate change projections on cumulative CO2 exchange rates: (A) NEE, (C) Reco and (E)

GEE at TS, and on (B) NEE, (D) Reco and (F) GEE on at SRS. Atmospheric convention is used here and positive

numbers indicate a loss of C to the atmosphere.
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beyond optimal growth and activity ranges
higher temperatures lead to reductions in pro-
ductivity (Lambers et al. 2008). Higher temper-
atures shifted the ratio of GEE to Reco and led to
greater C release at TS and SRS, though this effect
was very small. In Everglades ecosystems,
inundation may buffer the ecosystem response
to higher temperatures.

Precipitation affects both productivity and
ecosystem respiration rates by influencing water
and oxygen availability, altering exposed leaf
area through its effect on water depth, and
enhancing N inputs through wet N deposition.
As water levels affect ecosystem CO2 exchange
rates differently at TS and SRS (Malone et al.
2014b), so do changes in precipitation patterns.
At TS a 2% decrease in precipitation led to higher
net exchange rates via a smaller decrease in
ecosystem respiration relative to GEE. SRS was
insensitive to the 2% reduction in precipitation,
and at both TS and SRS, precipitation increased
cumulative GEE more than Reco, leading to
greater net C uptakes rates. In the precipitation
scenarios, wet season precipitation declined more
than in the dry season, and as a result of greater
sensitivity to changes in water levels the short
hydroperiod site, TS, was more sensitive to
changes in precipitation.

Climate change scenarios represent the range
in climate that would result from changes in
greenhouse gas concentration in the atmosphere.
At both sites, NEE, Reco and GEE responded to
changes in atmospheric CO2 concentration, tem-
perature and precipitation, though the magni-
tudes of change were small, less than a 20%
increase in average annual CO2 exchange rates.
Interactive effects of atmospheric CO2 concentra-
tion and climate change on ecosystem CO2

exchange rates were greater than the sum of the
individual effects and this enhancement was
likely due to the interaction between rising CO2

concentration and air temperature. CO2 enrich-
ment modifies the response to temperature
(Drake and Gonzàlez-Meler 1997) in C3 species,
like the dominant species at both sites, sawgrass.
Enrichment reduces photorespiration rates,
which moderates the adverse effects of high
temperature on C3 photosynthesis and results in
greater net photosynthesis as growth tempera-
tures increase (Long 1991, Vu et al. 1997). The
amount of Rubisco required also declines with

increasing temperature (Drake and Gonzàlez-
Meler 1997) and the degree of C3 photosynthesis
enhancement by higher CO2 concentration is
influenced by the temperature optimum for the
species (Vu et al. 1997). Considerable evidence
supports the prediction that CO2 uptake will be
greater in warm climates (Long 1991, McMurtrie
and Wang 1993), though this may not occur in
systems with low sensitivity to climate change.

Ecosystem sensitivity
Ecosystem sensitivity may be an essential

factor underlying the sustained C sequestering
capacities of Everglades ecosystems. Ecosystem
sensitivity to climate change is driven by water,
nutrients, and the responses of C3 species relative
to C4 species. At Both TS and SRS, nutrient
limitations should constrain the response to
climate change but at TS where hydroperiods
are short, changes in water cycling and the
response of C4 co-dominant species could in-
crease the ecosystems sensitivity to climate
change. Both TS and SRS exhibit low sensitivity
to changes in rising CO2 concentration and
climate change scenarios. Previous studies have
indicated that wet systems might be more
resilient to change than dry systems (Luo et al.
2008). In the Everglades, hydroperiods may serve
as a barrier to climate variation, which links the
importance of hydroperiod to ecosystem sensi-
tivity. Water above the soil surface dampens low
temperature effects, cools the system when
temperatures are high, and reduces the temper-
ature response of soil and macrophypte respira-
tion by slowing gas exchange. In addition to
hydroperiods, low nutrient (P) levels may also
affect ecosystem sensitivity to change (Steward
and Ornes 1975, Curtis and Wang 1998). The
Everglades is an oligotrophic system (Craighead
1971), and nutrient limitation can reduce the
capacity of ecosystems to respond to rising
atmospheric CO2 concentration (Stitt and Krapp
1999). Interacting environmental stresses can
influence the response to elevated CO2 in plants
(Lloyd and Farquhar 1994, Curtis 1996, Curtis
and Wang 1998) and environmental stresses tend
to reduce the CO2 response in C3 species (Wand
et al. 1999). Studies have shown that although
vegetation may initially respond to elevated CO2,
acclimation is reported to be more pronounced
when plants are N limited (Wong 1979, Oberba-
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uer et al. 1986, Bowes 1993, Curtis 1996, Stitt and
Krapp 1999, Ward and Strain 1999, Isopp et al.
2000). Studies have also shown that acclimation
to elevated CO2 rarely has reduced photosyn-
thetic capacity enough to completely compensate
for stimulated photosynthetic rates (Drake and
Gonzàlez-Meler 1997, Ward and Strain 1999).
Although in these simulations Everglades fresh-
water marsh ecosystems exhibit low sensitivity to
changes in atmospheric CO2 concentration and
climate change, shifts in disturbance regimes
(e.g., fire, tropical storms, drought) are also
projected for the region and will significantly
influence the future condition of the Everglades.

Disturbance regimes, C3 vs C4 plants,
and invasive species

To understand Everglades ecosystem vulnera-
bility and resistance to change, future research
must consider changes in ecosystem structure,
disturbance regimes, C3 versus C4 plants, and
invasive species risk in the Everglades region.
Although not considered in these model simula-
tions, the magnitude and frequency of distur-
bance events may significantly alter Everglades
ecosystem structure and function (Stanton and
Ackerman 2007). A rise in hurricane intensity,
more frequent heat waves, salt-water intrusion
and sea-level rise are all projected for the
Everglades region (Stanton and Ackerman
2007). Disturbance and altered hydrologic re-
gimes promote the displacement of native
vegetation by introduced or formerly restricted
species (Groves and Burdon 1986, Mooney and
Drake 1986), and have already led to changes in
vegetation community composition in the Ever-
glades (Toth 1987, 1988, Herndon et al. 1991,
Urban et al. 1993). Sawgrass communities in the
northern Everglades have already been replaced
by dense stands of cattail (Typha domingensis
Pers.; Richardson and Marshall 1990, Rutchey et
al. 1994, Jensen et al. 1995, Newman et al. 1998),
which invade disturbed and nutrient rich envi-
ronments (Dykyjová and Kv�et 1978, Grace and
Harrison 1986, Keddy 1990). Marl prairie land-
scapes comprising the outer regions of Ever-
glades National Park (ENP) have also shown
vulnerability to woody plant expansion (Jenkins
et al. 2003, Knickerbocker et al. 2009) due to
alterations in natural disturbance mechanisms
(flood and fire management, Hanan and Ross

2010). Since trees have the greatest response to
elevated CO2 (Ainsworth and Long 2005), woody
encroachment in TS may increase.

Soil disturbance has also caused encroachment
by exotics (Dalrymple et al. 1993) in the
Everglades. Bahia grass (Paspalum notatum
Flüggé) and torpedo grass (Panicum repens L.),
exotic species introduced for cattle forage, spread
quickly and aggressively. Under current condi-
tions, these C4 grasses are more metabolically
efficient than C3 species, allowing them to
encroach on sawgrass marshes. Invasion may
increase in the future if these species are sensitive
to elevated atmospheric CO2 concentration. It has
been suggested that elevated CO2 may preferen-
tially increase the abundance of invasive species
(Dukes and Mooney 1999, Weltzin et al. 2003),
which may have already played a stimulatory
role in plant invasions (Ziska 2003) and shifts in
dominance. Although some studies have shown
C4 species respond weakly to elevated CO2

(Ainsworth and Long 2005), others have found
many C4 plants to exhibit enhanced photosyn-
thetic and growth responses (Sionit and Patter-
son 1984, Ziska et al. 1990, Imai and Sato 1991,
Wand et al. 1999). This suggests that C4

photosynthesis is not necessarily saturated at
current CO2 levels (Sionit and Patterson 1984,
Imai and Sato 1991). C4 grasses have shown
significant changes in gas exchange, leaf area
development (Wand et al. 1999), and an average
growth enhancement of ;22% (Poorter and
Oberbauer 1993) following elevated CO2 concen-
tration. Previous research has also shown that
CO2 saturation levels in C4 species may be
altered by environmental conditions (Wand et
al. 1999). Ziska et al. (1990) found that elevated
CO2 concentration stimulated CO2 assimilation
rates in a cordgrass (Spartina patens Aiton)
dominated salt marsh, though the effect was
seasonal. Although enhanced C assimilation
rates in C3 species has been shown to decline
when stressed (Wand et al. 1999), C4 species
show less negative impacts of environmental
stresses (Wand et al. 1999).

Model limitations
Shifts in disturbance regimes and species

dynamics are very important factors that will
impact the sensitivity of Everglades ecosystems.
Although the DAYCENT model was appropriate
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for exploring the multifactor effects of rising
atmospheric CO2 concentration and climate
change on the current ecosystems CO2 exchange
rates, to better understand the future condition of
Everglades freshwater marsh ecosystems chang-
es in species cover need to be incorporated into
the model. In addition, incorporating changes in
P dynamics would be a significant improvement
in our confidence in model results in these P
limited systems. Modeling water table dynamics
(Dimitrov et al. 2014), beyond their effects on
NPP, soil C dynamics and season length, will also
be a very important component to determining
how climate change will influence Everglades
ecosystems. Furthermore, climate induced alter-
ations to disturbance regimes (i.e., salt water
intrusion, sea level rise and the frequency of
hurricanes and drought) and the incorporation of
data uncertainties into DAYCENT for both data
and the model output should also be considered.
Comparisons with results from simulations with
other ecosystem models (Luo and Reynolds 1999,
Sitch et al. 2003, Gerten et al. 2004, Krinner et al.
2005) will be necessary before drawing firm
conclusions related to the question of how
hydroperiods aid ecosystem resilience and what
thresholds for air temperature and precipitation
patterns significantly alter ecosystem sensitivity
in the Florida Everglades.

CONCLUSION

Climate change projections have created sub-
stantial uncertainty about the future structure
and function of Everglades ecosystems. As shifts
in atmospheric CO2 concentrations, air tempera-
ture, and precipitation are all expected over the
next 100 years, exploring these effects is impor-
tant for determining the current systems’ vulner-
ability, which may be an indication of the
potential ecosystem response to changes in sea
level rise and disturbance regimes. Our results
indicate that the hydrologic regime (timing,
length of inundation and water depth) is impor-
tant for ecosystem vulnerability, aiding Ever-
glades ecosystems in light of climate change. The
hydrologic regime may prove vital for reducing
vulnerability to invasive species and changes in
disturbance regimes as well, suggesting that
restoration efforts in the Everglades region will
be important for ecosystem resilience. Overall, a

future with greater C sequestration seems likely
for the Everglades region, so long as hydro-
periods are maintained. As climate change
reduces seasonal fluctuations in temperature
and precipitation, elevated CO2 exchange rates
may enhance the sink strength of Everglades
ecosystems. Larger sink strength, albeit small,
may be enough to switch these near CO2 neutral
sites to small sinks that negatively feedback to
global warming.
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