91 research outputs found

    High efficiency vibrational technology (HEVT) for cell encapsulation in polymeric microcapsules

    Get PDF
    Poly(methyl-methacrylate) (PMMA) is a biocompatible and non-biodegradable polymer widely used as biomedical material. PMMA microcapsules with suitable dimension and porosity range are proposed to encapsulate live cells useful for tissue regeneration purposes. The aim of this work was to evaluate the feasibility of producing cell-loaded PMMA microcapsules through “high effciency vibrational technology” (HEVT). Preliminary studies were conducted to set up the process parameters for PMMA microcapsules production and human dermal fibroblast, used as cell model, were encapsulated in shell/core microcapsules. Microcapsules morphometric analysis through optical microscope and scanning electron microscopy highlighted that uniform microcapsules of 1.2 mm with circular surface pores were obtained by HEVT. Best process conditions used were as follows: frequency of 200 Hz, voltage of 750 V, flow rate of core solution of 10 mL/min, and flow rate of shell solution of 0.5 bar. Microcapsule membrane allowed permeation of molecules with low and medium molecular weight up to 5900 Da and prevented diffusion of high molecular weight molecules (11,000 Da). The yield of the process was about 50% and cell encapsulation efficiency was 27% on total amount. The cell survived and growth up to 72 h incubation in simulated physiologic medium was observed

    Electrospun tubular vascular grafts to replace damaged peripheral arteries: A preliminary formulation study

    Get PDF
    Polymeric tubular vascular grafts represent a likely alternative to autologous vascular grafts for treating peripheral artery occlusive disease. This preliminary research study applied cutting-edge electrospinning technique for manufacturing prototypes with diameter ≤ 6 mm and based on biocompatible and biodegradable polymers such as polylactide-polycaprolactone, polylactide-co-glycolide and polyhydroxyethylmethacrylate combined in different design approaches (layering and blending). Samples were characterized about fiber morphology, diameter, size distribution, porosity, fluid uptake capability, and mechanical properties. Biocompatibility and cell interaction were evaluated by in vitro test. Goal of this preliminary study was to discriminate among the prototypes and select which composition and design approach could better suit tissue regeneration purposes. Results showed that electrospinning technique is suitable to obtain grafts with a diameter < 6 mm and thickness between 140 ± 7–175 ± 4 μm. Scanning electron microscopy analysis showed fibers with suitable micrometric diameters and pore size between 5 and 35 μm. polyhydroxyethylmethacrylate provided high hydrophilicity (≃ 100◦) and optimal cell short term proliferation (cell viability ≃ 160%) in accordance with maximum fluid uptake ability (300–350%). Moreover, addition of polyhydroxyethylmethacrylate lowered suture retention strength at value < 1 N. Prototypes obtaining combining polylactide-co-glycolide and polylactide-coglycolide/ polyhydroxyethylmethacrylate with polylactide-polycaprolactone in a bilayered structure showed optimal mechanical behavior resembling native bovine vessel

    The microfluidic technique and the manufacturing of polysaccharide nanoparticles

    Get PDF
    Themicrofluidic technique has emerged as a promising tool to accelerate the clinical translation of nanoparticles, and its application affects several aspects, such as the production of nanoparticles and the in vitro characterization in the microenvironment, mimicking in vivo conditions. This review covers the general aspects of the microfluidic technique and its application in several fields, such as the synthesis, recovering, and samples analysis of nanoparticles, and in vitro characterization and their in vivo application. Among these, advantages in the production of polymeric nanoparticles in a well-controlled, reproducible, and high-throughput manner have been highlighted, and detailed descriptions of microfluidic devices broadly used for the synthesis of polysaccharide nanoparticles have been provided. These nanoparticulate systems have drawn attention as drug delivery vehicles over many years; nevertheless, their synthesis using themicrofluidic technique is still largely unexplored. This review deals with the use of the microfluidic technique for the synthesis of polysaccharide nanoparticles; evaluating features of the most studied polysaccharide drug carriers, such as chitosan, hyaluronic acid, and alginate polymers. The critical assessment of the most recent research published in literature allows us to assume that microfluidics will play an important role in the discovery and clinical translation of nanoplatforms

    The effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tisue Regeneration Purposes

    Get PDF
    Electrospinning is known to be an effective and straightforward technique to fabricate polymer non woven matrices made of nano and microfibers. Micro patterned morphology of electrospun matrices results to be outmost advantageous in the biomedical field, since it is able to mimic extracellular matrix (ECM), and favors cell adhesion and proliferation. Controlling electrospun fibers alignment is crucial for the regenerative purposes of certain tissues, such as neuronal and vascular. In this study we investigated the impact of electrospinning process parameters on fiber alignment in tubular nanofibrous matrices made of Poly (L-lactide-co-ε-caprolactone) (PLA-PCL); a Design of Experiments (DoE) approach is here proposed in order to statistically set up the process parameters. The DoE was studied keeping constants the previously set material and environmental parameters; voltage, flow rate and mandrel rotating speed were the process parameters here investigated as variables. Orientation analysis was based on ImageJ and plugin Orientation J analysis of SEM images. The results show that voltage combined with flow rate has significant impact on electrospun fiber orientation, and the greatest orientation is achieved when all the three input parameters (voltage, flow rate and mandrel rotation speed) are at their maximum value

    Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints : a 3-year follow-up study

    Get PDF
    Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer's disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE epsilon 4 allele, comorbidities, brain amyloid-beta (A beta) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE epsilon 4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of A beta deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood

    Variations in seasonal solar insolation are associated with a history of suicide attempts in bipolar I disorder

    Get PDF
    Background: Bipolar disorder is associated with circadian disruption and a high risk of suicidal behavior. In a previous exploratory study of patients with bipolar I disorder, we found that a history of suicide attempts was associated with differences between winter and summer levels of solar insolation. The purpose of this study was to confirm this finding using international data from 42% more collection sites and 25% more countries. Methods: Data analyzed were from 71 prior and new collection sites in 40 countries at a wide range of latitudes. The analysis included 4876 patients with bipolar I disorder, 45% more data than previously analyzed. Of the patients, 1496 (30.7%) had a history of suicide attempt. Solar insolation data, the amount of the sun’s electromagnetic energy striking the surface of the earth, was obtained for each onset location (479 locations in 64 countries). Results: This analysis confirmed the results of the exploratory study with the same best model and slightly better statistical significance. There was a significant inverse association between a history of suicide attempts and the ratio of mean winter insolation to mean summer insolation (mean winter insolation/mean summer insolation). This ratio is largest near the equator which has little change in solar insolation over the year, and smallest near the poles where the winter insolation is very small compared to the summer insolation. Other variables in the model associated with an increased risk of suicide attempts were a history of alcohol or substance abuse, female gender, and younger birth cohort. The winter/summer insolation ratio was also replaced with the ratio of minimum mean monthly insolation to the maximum mean monthly insolation to accommodate insolation patterns in the tropics, and nearly identical results were found. All estimated coefficients were significant at p &lt; 0.01. Conclusion: A large change in solar insolation, both between winter and summer and between the minimum and maximum monthly values, may increase the risk of suicide attempts in bipolar I disorder. With frequent circadian rhythm dysfunction and suicidal behavior in bipolar disorder, greater understanding of the optimal roles of daylight and electric lighting in circadian entrainment is needed

    Dermatillomania: Strategies for Developing Protective Biomaterials/Cloth

    No full text
    Dermatillomania or skin picking disorder (SPD) is a chronic, recurrent, and treatment resistant neuropsychiatric disorder with an underestimated prevalence that has a concerning negative impact on an individual’s health and quality of life. The current treatment strategies focus on behavioral and pharmacological therapies that are not very effective. Thus, the primary objective of this review is to provide an introduction to SPD and discuss its current treatment strategies as well as to propose biomaterial-based physical barrier strategies as a supporting or alternative treatment. To this end, searches were conducted within the PubMed database and Google Scholar, and the results obtained were organized and presented as per the following categories: prevalence, etiology, consequences, diagnostic criteria, and treatment strategies. Furthermore, special attention was provided to alternative treatment strategies and biomaterial-based physical treatment strategies. A total of six products with the potential to be applied as physical barrier strategies in supporting SPD treatment were shortlisted and discussed. The results indicated that SPD is a complex, underestimated, and underemphasized neuropsychiatric disorder that needs heightened attention, especially with regard to its treatment and care. Moreover, the high synergistic potential of biomaterials and nanosystems in this area remains to be explored. Certain strategies that are already being utilized for wound healing can also be further exploited, particularly as far as the prevention of infections is concerned

    Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases

    No full text
    Introduction: Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. Areas covered: This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. Expert opinion: Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety

    Revolution of Resting-State Functional Neuroimaging Genetics in Alzheimer’s Disease

    No full text
    for the Alzheimer Precision Medicine Initiative (APMI)International audienceThe quest to comprehend genetic, biological, and symptomatic heterogeneity underlying Alzheimer’s disease (AD) requires a deep understanding of mechanisms affecting complex brain systems. Neuroimaging genetics is an emerging field that provides a powerful way to analyze and characterize intermediate biological phenotypes of AD. Here, we describe recent studies showing the differential effect of genetic risk factors for AD on brain functional connectivity in cognitively normal, preclinical, prodromal, and AD dementia individuals. Functional neuroimaging genetics holds particular promise for the characterization of preclinical populations; target populations for disease prevention and modification trials. To this end, we emphasize the need for a paradigm shift towards integrative disease modeling and neuroimaging biomarker-guided precision medicine for AD and other neurodegenerative diseases
    corecore