34 research outputs found

    Application of Lifeact Reveals F-Actin Dynamics in Arabidopsis thaliana and the Liverwort, Marchantia polymorpha

    Get PDF
    Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact–Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact–Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages

    Foods Containing <i>Pantoea agglomerans</i> LPS Reduce Eye-Nose Allergies—A Double-Blind, Placebo-Controlled, Randomized, Parallel-Group Comparative Pilot Study

    No full text
    In this study, the effects of foods containing lipopolysaccharide (LPS) from Pantoea agglomerans (LPSp) on immunity were preliminarily investigated using a double-blind, placebo-controlled, randomized, parallel-group comparative study design. Thirty healthy subjects aged ≥ 20 years (four males and twenty-six females; mean age 49 ± 9.2 years) were randomly assigned to the LPS-containing food group (488 μg/day; LPS) or placebo group. Each food was consumed for 8 weeks, and a subjective survey of cold symptoms (Wisconsin Upper Respiratory Symptom Questionnaire) and allergic symptoms of the eyes and nose were conducted. Phagocytic capacity and lymphocyte counts were measured as indicators of immune function. There were no significant between-group differences with respect to any of the investigated items. On sub-group analysis of eye–nose allergy symptom score, confined only to subjects who reported eye–nose allergic symptoms in previous years, the LPS group showed a trend toward milder symptoms compared to the placebo group. In addition, when the symptom scores were compared only for subjects who developed eye–nose allergies during the study period, the LPS group showed significantly lower overall scores and eye symptom scores compared to the placebo group. These results suggest that the consumption of LPS-containing foods may alleviate or prevent eye–nose allergies. There were no statistically predominant changes in hematology and blood biochemistry tests, indicating that continued consumption of LPS-containing foods is safe. (UMIN000046154)

    <i>Pantoea agglomerans</i> Lipopolysaccharide Controls Nasal Discomfort—A Placebo-Controlled, Randomized, Double-Blind, Parallel-Group Comparison Trial

    No full text
    The present study examined the effects of foods containing lipopolysaccharides from Pantoea agglomerans (LPSp) on eye–nose allergic symptoms using a double-blind, placebo-controlled, randomized, parallel-group comparative research design. Sixty-three Japanese individuals aged 20–65 years with eye–nose allergic symptoms were included in this study and assigned to the LPS (480 μg/day)-containing food and placebo groups. Data on the subjective eye–nose allergic symptoms and antiallergic medication during the 8-week period were evaluated. The immunoglobulin E (IgE) and eosinophil counts were measured as indicators that may be correlated with allergy. No significant group differences were found in the change in eye–nose allergic symptoms from baseline. However, the LPS group showed a significantly shorter duration of antiallergic medication use and lower total antiallergic drug score than the placebo group. The corrected nasal allergy score calculated by taking into account the antiallergic drug score at week 8 was predominantly lower in the LPS group. The IgE to house dust and cedar pollen and eosinophil counts tended to be lower in the LPS group, and the total IgE and eosinophil counts were significantly lower in the LPS group at week 4. In conclusion, our results indicate that LPS-containing foods alleviate eye–nose allergic symptoms and consequently lower the use of antiallergic drugs (UMIN000049974)

    Data from: Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents development of atherosclerosis in high-fat diet-fed apoE-deficient mice via ameliorating hyperlipidemia, pro-inflammatory mediators and oxidative responses

    No full text
    Pantoea agglomerans (P. agglomerans) is a Gram-negative bacterium that grows symbiotically with various edible plants, and the oral or sublingual administration of lipopolysaccharide derived from P. agglomerans (LPSp) have been suggested to contribute to prevention of immune-related diseases. Our previous study indicated that orally administered LPSp was shown to exhibit an LDL-lowering effect in hyperlipidemic volunteers; however, a preventive effect of LPSp on atherosclerosis is unclear. The present study attempted to evaluate the anti-atherosclerotic effect by LPSp in a mouse model of high-fat diet (HFD)-induced atherosclerosis. For 16 weeks, apoE-deficient mice were fed an HFD and received drinking water containing LPSp (0.3 or 1 mg/kg body weight/day). The results showed that the orally administered LPSp decreased body weight. A significant reduction in atherosclerotic plaque deposition was observed even with the lower dose of LPSp. The biochemical analyses showed that LPSp markedly improved glucose tolerance and reduced plasma LDL and oxidized LDL levels. In addition, LPSp significantly reduced the production of pro-inflammatory mediators including MCP-1 (in the plasma), TNF-α and IL-6 (in the colon), and decreased the oxidative burst activities in the peripheral blood sample. Taken together, these results suggest the possibility that oral administration of LPSp can effectively ameliorate HFD-induced hyperlipidemia and inflammatory/oxidative responses to prevent atherosclerosis and related metabolic disorders

    Data from: Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents development of atherosclerosis in high-fat diet-fed apoE-deficient mice via ameliorating hyperlipidemia, pro-inflammatory mediators and oxidative responses

    No full text
    Pantoea agglomerans (P. agglomerans) is a Gram-negative bacterium that grows symbiotically with various edible plants, and the oral or sublingual administration of lipopolysaccharide derived from P. agglomerans (LPSp) have been suggested to contribute to prevention of immune-related diseases. Our previous study indicated that orally administered LPSp was shown to exhibit an LDL-lowering effect in hyperlipidemic volunteers; however, a preventive effect of LPSp on atherosclerosis is unclear. The present study attempted to evaluate the anti-atherosclerotic effect by LPSp in a mouse model of high-fat diet (HFD)-induced atherosclerosis. For 16 weeks, apoE-deficient mice were fed an HFD and received drinking water containing LPSp (0.3 or 1 mg/kg body weight/day). The results showed that the orally administered LPSp decreased body weight. A significant reduction in atherosclerotic plaque deposition was observed even with the lower dose of LPSp. The biochemical analyses showed that LPSp markedly improved glucose tolerance and reduced plasma LDL and oxidized LDL levels. In addition, LPSp significantly reduced the production of pro-inflammatory mediators including MCP-1 (in the plasma), TNF-α and IL-6 (in the colon), and decreased the oxidative burst activities in the peripheral blood sample. Taken together, these results suggest the possibility that oral administration of LPSp can effectively ameliorate HFD-induced hyperlipidemia and inflammatory/oxidative responses to prevent atherosclerosis and related metabolic disorders
    corecore