182 research outputs found

    The role of galaxy formation in the structure and dynamics of dark matter halos

    Get PDF
    The structure and dynamics of dark matter halos, as predicted by the hierarchical clustering scenario, are at odds with the properties inferred from the observations at galactic scales. My Thesis addresses this problem by taking an evolutionary approach. I analysed in detail the many and different observational evidences of a discrepancy the predicted halo equilibrium state and the one inferred from the measurable properties of disk galaxies, as well as of the scaling relations existing between the angular momentum, geometry and mass distribution of the luminous and dark components, and realized that they all seem to point towards the same conclusion: the baryons hosted inside the halo, by collapsing and assembling to form the galaxy, perturb the halo equilibrium structure and made it evolve into new configurations. From the theoretical point of view, the behaviour of dark matter halos as collisionless systems of particles makes their equilibrium structure and mass distribution extremely sensitive to perturbations of their inner dynamics. The galaxy formation occurring inside the halos is a tremendous event, and the dynamical coupling between the baryons and the dark matter during the protogalaxy collapse represents a perturbation of the halo dynamical structure large enough to trigger a halo evolution, according to the relative mass and angular momentum of the two components. My conclusion is that the structure and dynamics of dark matter halos, as well as the origin of the connection between the halo and galaxy properties, are to be understood in in terms of a joint evolution of the baryonic and dark components, originating at the epoch of the collapse and formation of the galaxy

    Hierarchical models of high redshift galaxies with thermally pulsing asymptotic giant branch stars: comparison with observations

    Get PDF
    In a recent paper we presented the first semi-analytic model of galaxy formation in which the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution has been fully implemented. Here we address the comparison with observations, and show how the TP-AGB recipe affects the performance of the model in reproducing the colours and near-IR luminosities of high-redshift galaxies. We find that the semi-analytic model with the TP-AGB better matches the colour-magnitude and colour-colour relations at z ~ 2, both for nearly-passive and for star-forming galaxies. The model with TP-AGB produces star-forming galaxies with red V-K colours, thus revising the unique interpretation of high-redshift red objects as 'red & dead'. We also show that without the TP-AGB the semi-analytic model fails at reproducing the observed colours, a situation that cannot be corrected by dust reddening. We also explore the effect of nebular emission on the predicted colour-magnitude relation of star-forming galaxies, to conclude that it does not play a significant role in reddening their colours, at least in the range of star-formation rates covered by the model. Finally, the rest-frame K-band luminosity function at z ~ 2.5 is more luminous by almost 1 magnitude. This indicates that the AGN feedback recipe that is adopted to regulate the high-mass end of the luminosity function should be sophisticated to take the effect of the stellar populations into account at high redshifts.Comment: 10 pages, 8 figures; effects of nebular emission included; accepted for publication on MNRA

    The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues

    Full text link
    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires an expert knowledge of galaxy modelling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalogue suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light-cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO's features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.Comment: 17 pages, 11 figures, 2 tables; accepted for publication in ApJS. The Theoretical Astrophysical Observatory (TAO) is now open to the public at https://tao.asvo.org.au/. New simulations, models and tools will be added as they become available. Contact [email protected] if you have data you would like to make public through TAO. Feedback and suggestions are very welcom

    Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results

    Full text link
    This paper describes a new publicly available codebase for modelling galaxy formation in a cosmological context, the "Semi-Analytic Galaxy Evolution" model, or SAGE for short. SAGE is a significant update to that used in Croton et al. (2006) and has been rebuilt to be modular and customisable. The model will run on any N-body simulation whose trees are organised in a supported format and contain a minimum set of basic halo properties. In this work we present the baryonic prescriptions implemented in SAGE to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling--radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.Comment: 15 pages, 9 figures, accepted for publication in ApJS. SAGE is a publicly available codebase for modelling galaxy formation in a cosmological context, available at https://github.com/darrencroton/sage Questions and comments can be sent to Darren Croton: [email protected]

    Star formation rates and masses of z ~ 2 galaxies from multicolour photometry

    Get PDF
    Fitting synthetic spectral energy distributions (SED) to the multi-band photometry of galaxies to derive their star formation rates (SFR), stellar masses, ages, etc. requires making a priori assumptions about their star formation histories (SFH). A widely adopted parameterization of the SFH, the so-called tau-models where SFR goes as e^{-t/tau) is shown to lead to unrealistically low ages when applied to star forming galaxies at z ~ 2, a problem shared by other SFHs when the age is left as a free parameter in the fitting. This happens because the SED of such galaxies, at all wavelengths, is dominated by their youngest stellar populations, which outshine the older ones. Thus, the SED of such galaxies conveys little information on the beginning of star formation. To cope with this problem, we explore a variety of SFHs, such as constant SFR and inverted-tau models - with SFR as e^{+t/tau) - along with various priors on age, including assuming that star formation started at high redshift in all the galaxies. We find that inverted-tau models with such latter assumption give SFRs and extinctions in excellent agreement with the values derived using only the UV part of the SED. These models are also shown to accurately recover the SFRs and masses of mock galaxies at z ~ 2 constructed from semi-analytic models. All other explored SFH templates do not fulfil these two test. In particular, direct-tau models with unconstrained age in the fitting procedure overstimate SFRs and underestimate stellar mass, and would exacerbate an apparent mismatch between the cosmic evolution of the volume densities of SFR and stellar mass. We conclude that for high-redshift star forming galaxies an exponentially increasing SFR with a high formation redshift is preferable to other forms of the SFH so far adopted in the literature.Comment: 19 pages, 28 figures, Monthly Notices of the Royal Astronomical Society in pres

    The hierarchical build-up of the Tully-Fisher relation

    Get PDF
    We use the semi-analytic model GalICS to predict the Tully-Fisher relation in the B, I and for the first time, in the K band, and its evolution with redshift, up to z~1. We refined the determination of the disk galaxies rotation velocity, with a dynamical recipe for the rotation curve, rather than a simple conversion from the total mass to maximum velocity. The new recipe takes into account the disk shape factor, and the angular momentum transfer occurring during secular evolution leading to the formation of bulges. This produces model rotation velocities that are lower by ~20-25% for the majority of the spirals. We implemented stellar population models with a complete treatment of the TP-AGB, which leads to a revision of the mass-to-light ratio in the near-IR. I/K band luminosities increase by ~0.3/0.5 mags at redshift z=0 and by ~0.5/1 mags at z=3. With these two new recipes in place, the comparison between the predicted Tully-Fisher relation with a series of datasets in the optical and near-IR, at redshifts between 0 and 1, is used as a diagnostics of the assembly and evolution of spiral galaxies in the model. At 0.4<z<1.2 the match between the new model and data is remarkably good, especially for later-type spirals (Sb/Sc). At z=0 the new model shows a net improvement in comparison with its original version of 2003, and in accord with recent observations in the K band, the model Tully-Fisher also shows a morphological differentiation. However, in all bands the z=0 model Tully-Fisher is too bright. We argue that this behaviour is caused by inadequate star formation histories in the model galaxies at low redshifts. The star-formation rate declines too slowly, due to continuous gas infall that is not efficiently suppressed. An analysis of the model disk scale lengths, at odds with observations, hints to some missing physics in the modeling of disk formation inside dark matter halos.Comment: Accepted for publication on MNRAS. 2 new plots, 1 new section, and extended discussion. 21 pages, 11 figures in tota

    The impact of TP-AGB stars on hierarchical galaxy formation models

    Get PDF
    The spectro-photometric properties of galaxies in galaxy formation models are obtained by combining the predicted history of star formation and mass accretion with the physics of stellar evolution through stellar population models. In the recent literature, significant differences have emerged regarding the implementation of the Thermally-Pulsing Asymptotic Giant Branch phase of stellar evolution. The emission in the TP-AGB phase dominates the bolometric and near-IR spectrum of intermediate-age (~1 Gyr) stellar populations, hence it is crucial for the correct modeling of the galaxy luminosities and colours. In this paper for the first time, we incorporate a full prescription of the TP-AGB phase in a semi-analytic model of galaxy formation. We find that the inclusion of the TP-AGB in the model spectra dramatically alters the predicted colour-magnitude relation and its evolution with redshift. When the TP-AGB phase is active, the rest-frame V-K galaxy colours are redder by almost 2 magnitudes in the redshift range z~2-3 and by 1 magnitude at z~1. Very red colours are produced in disk galaxies, so that the V-K colour distributions of disk and spheroids are virtually undistinguishable at low redshifts. We also find that the galaxy K-band emission is more than 1 magnitude higher in the range z~1-3. This may alleviate the difficulties met by the hierarchical clustering scenario in predicting the red galaxy population at high redshifts. The comparison between simulations and observations have to be revisited in the light of our results.Comment: 6 pages, 4 figures. Accepted for publication on MNRAS Letter
    • …
    corecore