11,383 research outputs found
Unitary chiral dynamics in decays into and the role of the scalar mesons
We make a theoretical study of the \J decays into ,
, and using the techniques of
the chiral unitary approach stressing the important role of the scalar
resonances dynamically generated through the final state interaction of the two
pseudoscalar mesons. We also discuss the importance of new mechanisms with
intermediate exchange of vector and axial-vector mesons and the role played by
the OZI rule in the \J\phi\pi\pi vertex, quantifying its effects. The results
nicely reproduce the experimental data for the invariant mass distributions in
all the channels considered.Comment: Prepared for the 10th International Symposium on Meson-Nucleon
Physics and the Structure of the Nucleo
Inclusive Muon Capture in Light Nuclei
We study total muon capture rates in light nuclei, taking into account
renormalizations of the nuclear vector and axial vector strengths. We estimate
the influence in the results of uncertainties of the spin-isospin interaction
parameter and nuclear densities. A few of these reactions are theoretical
benchmarks for physics involving searches for neutrino oscillations. New
experiments in muon capture in several targets are suggested, in the light of
some discrepancies with theory, crudeness of some experimental results and
relevance to neutrino physics.Comment: 11 pages, Latex, no figures. Submitted to Phys.Lett.
X-ray Lags in PDS 456 Revealed by Suzaku Observations
X-ray reverberation lags from the vicinity of supermassive black holes have
been detected in almost 30 AGN. The soft lag, which is the time delay between
the hard and soft X-ray light curves, is usually interpreted as the time
difference between the direct and reflected emission, but is alternatively
suggested to arise from the direct and scattering emission from distant clouds.
By analysing the archival Suzaku observations totalling an exposure time of ~
770 ks, we discover a soft lag of ks at Hz in
the luminous quasar PDS 456, which is the longest soft lag and lowest Fourier
frequency reported to date. In this study, we use the maximum likelihood method
to deal with non-continuous nature of the Suzaku light curves. The result
follows the mass-scaling relation for soft lags, which further supports that
soft lags originate from the innermost areas of AGN and hence are best
interpreted by the reflection scenario. Spectral analysis has been performed in
this work and we find no evidence of clumpy partial-covering absorbers. The
spectrum can be explained by a self-consistent relativistic reflection model
with warm absorbers, and spectral variations over epochs can be accounted for
by the change of the continuum, and of column density and ionization states of
the warm absorbers.Comment: accepted for publication in MNRA
Quantum Melting of the Charge Density Wave State in 1T-TiSe2
We report a Raman scattering study of low-temperature, pressure-induced
melting of the CDW phase of 1T-TiSe2. Our Raman scattering measurements reveal
that the collapse of the CDW state occurs in three stages: (i) For P<5 kbar,
the pressure dependence of the CDW amplitude mode energies and intensities are
indicative of a ``crystalline'' CDW regime; (ii) for 5 < P < 25 kbar, there is
a decrease in the CDW amplitude mode energies and intensities with increasing
pressure that suggests a regime in which the CDW softens, and may decouple from
the lattice; and (iii) for P>25 kbar, the absence of amplitude modes reveals a
melted CDW regime.Comment: 5 pages, 4 figure
Improved detectivity of pyroelectric detectors
High detectivity single-element SBN pyroelectric detectors were fabricated. The theory and technology developments related to improved detector performance were identified and formulated. Improved methods of material characterization, thinning, mounting, blackening and amplifier matching are discussed. Detectors with detectivities of 1.3 x 10 to the 9th power square root of Hz/watt at 1 Hz are reported. Factors limiting performance and recommendations for future work are discussed
Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations
We improve upon the radiative, hydrostatic equilibrium models of passive
circumstellar disks constructed by Chiang & Goldreich (1997). New features
include (1) account for a range of particle sizes, (2) employment of
laboratory-based optical constants of representative grain materials, and (3)
numerical solution of the equations of radiative and hydrostatic equilibrium
within the original 2-layer (disk surface + disk interior) approximation. We
explore how the spectral energy distribution (SED) of a face-on disk depends on
grain size distributions, disk geometries and surface densities, and stellar
photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars,
including spectra from the Long Wavelength Spectrometer (LWS) aboard the
Infrared Space Observatory (ISO), are fitted with our models. Silicate emission
bands from optically thin, superheated disk surface layers appear in nearly all
systems. Water ice emission bands appear in LWS spectra of 2 of the coolest
stars. Infrared excesses in several sources are consistent with vertical
settling of photospheric grains. While this work furnishes further evidence
that passive reprocessing of starlight by flared disks adequately explains the
origin of infrared-to-millimeter wavelength excesses of young stars, we
emphasize how the SED alone does not provide sufficient information to
constrain particle sizes and disk masses uniquely.Comment: Accepted to ApJ, 35 pages inc. 14 figures, AAS preprin
- …