193 research outputs found

    Methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii on computer interface surfaces of hospital wards and association with clinical isolates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer keyboards and mice are potential reservoirs of nosocomial pathogens, but routine disinfection for non-water-proof computer devices is a problem. With better hand hygiene compliance of health-care workers (HCWs), the impact of these potential sources of contamination on clinical infection needs to be clarified.</p> <p>Methods</p> <p>This study was conducted in a 1600-bed medical center of southern Taiwan with 47 wards and 282 computers. With education and monitoring program of hand hygiene for HCWs, the average compliance rate was 74% before our surveillance. We investigated the association of methicillin-resistant <it>Staphylococcus aureus </it>(MRSA), <it>Pseudomonas aeruginosa </it>and <it>Acinetobacter baumannii</it>, three leading hospital-acquired pathogens, from ward computer keyboards, mice and from clinical isolates in non-outbreak period by pulsed field gel electrophoresis and antibiogram.</p> <p>Results</p> <p>Our results revealed a 17.4% (49/282) contamination rate of these computer devices by <it>S. aureus</it>, <it>Acinetobacter </it>spp. or <it>Pseudomonas </it>spp. The contamination rates of MRSA and <it>A. baumannii </it>in the ward computers were 1.1% and 4.3%, respectively. No <it>P. aeruginosa </it>was isolated. All isolates from computers and clinical specimens at the same ward showed different pulsotypes. However, <it>A. baumannii </it>isolates on two ward computers had the same pulsotype.</p> <p>Conclusion</p> <p>With good hand hygiene compliance, we found relatively low contamination rates of MRSA, <it>P. aeruginosa </it>and <it>A. baumannii </it>on ward computer interface, and without further contribution to nosocomial infection. Our results suggested no necessity of routine culture surveillance in non-outbreak situation.</p

    Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    Get PDF
    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity

    Oral squamous cell cancer: early detection and the role of alcohol and smoking

    Get PDF
    Objective: Oral squamous cell carcinoma has a remarkable incidence worldwide and a fairly onerous prognosis, encouraging further research on factors that might modify disease outcome. Data sources: A web-based search for all types of articles published was initiated using Medline/Pub Med, with the key words such as oral cancer, alcohol consumption, genetic polymorphisms, tobacco smoking and prevention. The search was restricted to articles published in English, with no publication date restriction (last update 2010). Review Methods: In this review article, we approach the factors for a cytologic diagnosis during OSCC development and the markers used in modern diagnostic technologies as well. We also reviewed available studies of the combined effects of alcohol drinking and genetic polymorphisms on alcohol-related cancer risk. Results: The interaction of smoking and alcohol significantly increases the risk for aero-digestive cancers. The interaction between smoking and alcohol consumption seems to be responsible for a significant amount of disease. Conclusion: Published scientific data show promising pathways for the future development of more effective prognosis. There is a clear need for new prognostic indicators, which could be used in diagnostics and, therefore a better selection of the most effective treatment can be achieved

    Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting

    Get PDF
    Marine invertebrates are rich sources of bioactive compounds and their biotechnological potential attracts scientific and economic interest worldwide. Although sponges are the foremost providers of marine bioactive compounds, cnidarians are also being studied with promising results. This diverse group of marine invertebrates includes over 11,000 species, 7500 of them belonging to the class Anthozoa. We present an overview of some of the most promising marine bioactive compounds from a therapeutic point of view isolated from cnidarians in the first decade of the 21st century. Anthozoan orders Alcyonacea and Gorgonacea exhibit by far the highest number of species yielding promising compounds. Antitumor activity has been the major area of interest in the screening of cnidarian compounds, the most promising ones being terpenoids (monoterpenoids, diterpenoids, sesquiterpenoids). We also discuss the future of bioprospecting for new marine bioactive compounds produced by cnidarians

    Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection

    Get PDF
    Extreme-drug-resistant (XDR) Acinetobacter baumannii is a rapidly emerging pathogen causing infections with unacceptably high mortality rates due to inadequate available treatment. New methods to prevent and treat such infections are a critical unmet medical need. To conduct a rational vaccine discovery program, OmpA was identified as the primary target of humoral immune response after intravenous infection by A. baumannii in mice. OmpA was >99% conserved at the amino acid level across clinical isolates harvested between 1951 and 2009 from cerebrospinal fluid, blood, lung, and wound infections, including carbapenem-resistant isolates, and was ≥89% conserved among other sequenced strains, but had minimal homology to the human proteome. Vaccination of diabetic mice with recombinant OmpA (rOmpA) with aluminum hydroxide adjuvant markedly improved survival and reduced tissue bacterial burden in mice infected intravenously. Vaccination induced high titers of anti-OmpA antibodies, the levels of which correlated with survival in mice. Passive transfer with immune sera recapitulated protection. Immune sera did not enhance complement-mediated killing but did enhance opsonophagocytic killing of A. baumannii. These results define active and passive immunization strategies to prevent and treat highly lethal, XDR A. baumannii infections

    Pilot Scale Production of Highly Efficacious and Stable Enterovirus 71 Vaccine Candidates

    Get PDF
    BACKGROUND: Enterovirus 71 (EV71) has caused several epidemics of hand, foot and mouth diseases (HFMD) in Asia and now is being recognized as an important neurotropic virus. Effective medications and prophylactic vaccine against EV71 infection are urgently needed. Based on the success of inactivated poliovirus vaccine, a prototype chemically inactivated EV71 vaccine candidate has been developed and currently in human phase 1 clinical trial. PRINCIPAL FINDING: In this report, we present the development of a serum-free cell-based EV71 vaccine. The optimization at each step of the manufacturing process was investigated, characterized and quantified. In the up-stream process development, different commercially available cell culture media either containing serum or serum-free was screened for cell growth and virus yield using the roller-bottle technology. VP-SFM serum-free medium was selected based on the Vero cell growth profile and EV71 virus production. After the up-stream processes (virus harvest, diafiltration and concentration), a combination of gel-filtration liquid chromatography and/or sucrose-gradient ultracentrifugation down-stream purification processes were investigated at a pilot scale of 40 liters each. Although the combination of chromatography and sucrose-gradient ultracentrifugation produced extremely pure EV71 infectious virus particles, the overall yield of vaccine was 7-10% as determined by a VP2-based quantitative ELISA. Using chromatography as the downstream purification, the virus yield was 30-43%. To retain the integrity of virus neutralization epitopes and the stability of the vaccine product, the best virus inactivation was found to be 0.025% formalin-treatment at 37 °C for 3 to 6 days. Furthermore, the formalin-inactivated virion vaccine candidate was found to be stable for >18 months at 4 °C and a microgram of viral proteins formulated with alum adjuvant could induce strong virus-neutralizing antibody responses in mice, rats, rabbits, and non-human primates. CONCLUSION: These results provide valuable information supporting the current cell-based serum-free EV71 vaccine candidate going into human Phase I clinical trials

    Recapitulation of Fibromatosis Nodule by Multipotential Stem Cells in Immunodeficient Mice

    Get PDF
    Musculoskeletal fibromatosis remains a disease of unknown etiology. Surgical excision is the standard of care, but the recurrence rate remains high. Superficial fibromatosis typically presents as subcutaneous nodules caused by rapid myofibroblast proliferation followed by slow involution to dense acellular fibrosis. In this study, we demonstrate that fibromatosis stem cells (FSCs) can be isolated from palmar nodules but not from cord or normal palm tissues. We found that FSCs express surface markers such as CD29, CD44, CD73, CD90, CD105, and CD166 but do not express CD34, CD45, or CD133. We also found that FSCs are capable of expanding up to 20 passages, that these cells include myofibroblasts, osteoblasts, adipocytes, chondrocytes, hepatocytes, and neural cells, and that these cells possess multipotentiality to develop into the three germ layer cells. When implanted beneath the dorsal skin of nude mice, FSCs recapitulated human fibromatosis nodules. Two weeks after implantation, the cells expressed immunodiagnostic markers for myofibroblasts such as α-smooth muscle actin and type III collagen. Two months after implantation, there were fewer myofibroblasts and type I collagen became evident. Treatment with the antifibrogenic compound Trichostatin A (TSA) inhibited the proliferation and differentiation of FSCs in vitro. Treatment with TSA before or after implantation blocked formation of fibromatosis nodules. These results suggest that FSCs are the cellular origin of fibromatosis and that these cells may provide a promising model for developing new therapeutic interventions

    Ciliopathies: an expanding disease spectrum

    Get PDF
    Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing “outside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features

    Aberrant antigenic expression in extranodal NK/T-cell lymphoma: a multi-parameter study from Thailand

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extranodal NK/T-cell lymphoma, nasal type (ENKTL) is not common worldwide, but it is the most common T- and NK-cell lymphomas in many Asian countries. Immunophenotypic profiles were studied based on limited series. The authors, therefore, studied on ENKTL according to characterize immunophenotypic profiles as well as the distribution of EBV subtype and LMP-1 gene deletion.</p> <p>Methods</p> <p>By using tissue microarray (TMA), immunohistochemical study and EBV encoded RNA (EBER) in situ hybridization were performed. T-cell receptor (TCR) gene rearrangement, EBV subtyping, and LMP-1 gene deletion were studied on the available cases.</p> <p>Results</p> <p>There were 22 cases eligible for TMA. ENKTL were positive for CD3 (91%), CD5 (9%), CD7 (32%), CD4 (14%), CD56 (82%), TIA-1 (100%), granzyme B (95%), perforin (86%), CD45 (83%), CD30 (75%), Oct2 (25%), and IRF4/MUM1 (33%). None of them was positive for βF1, CD8, or CD57. TCR gene rearrangement was negative in all 18 tested cases. EBV was subtype A in all 15 tested cases, with 87% deleted LMP-1 gene. Cases lacking perforin expression demonstrated a significantly poorer survival outcome (p = 0.008).</p> <p>Conclusions</p> <p>The present study demonstrated TIA-1 and EBER as the two most sensitive markers. There were a few CD3 and/or CD56 negative cases noted. Interestingly, losses of CD45 and/or CD7 were not uncommon while Oct2 and IRF4/MUM1 could be positive in a subset of cases. Based on the present study in conjunction with the literature review, determination of PCR-based TCR gene rearrangement analysis might not be a useful technique for making diagnosis of ENKTL.</p

    Connecting Planetary Composition with Formation

    Full text link
    The rapid advances in observations of the different populations of exoplanets, the characterization of their host stars and the links to the properties of their planetary systems, the detailed studies of protoplanetary disks, and the experimental study of the interiors and composition of the massive planets in our solar system provide a firm basis for the next big question in planet formation theory. How do the elemental and chemical compositions of planets connect with their formation? The answer to this requires that the various pieces of planet formation theory be linked together in an end-to-end picture that is capable of addressing these large data sets. In this review, we discuss the critical elements of such a picture and how they affect the chemical and elemental make up of forming planets. Important issues here include the initial state of forming and evolving disks, chemical and dust processes within them, the migration of planets and the importance of planet traps, the nature of angular momentum transport processes involving turbulence and/or MHD disk winds, planet formation theory, and advanced treatments of disk astrochemistry. All of these issues affect, and are affected by the chemistry of disks which is driven by X-ray ionization of the host stars. We discuss how these processes lead to a coherent end-to-end model and how this may address the basic question.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018). 46 pages, 10 figure
    corecore