153 research outputs found

    Contemporary data on treatment practices for low-density lipoprotein cholesterol in 3867 patients who had suffered an acute coronary syndrome across the world

    Get PDF
    DYSIS II ACS was a longitudinal, observational study in 3867 patients from 18 countries. They were being hospitalized after suffering an acute coronary syndrome. Evaluations were performed at the time of admission and again 120±15 days following the date of admission (the follow-up time point). 2521 patients were on active lipid lowering treatment (LLT) at admission. Mean atorvastatin dose was 22 mg per day and 2.7% received ezetimibe in combination with a statin. At discharge from hospital, 3767 patients received LLT expressed as a mean atorvastatin dose of 36 mg per day with 4.8% receiving ezetimibe on top of a statin. After 120 days, intensity in lipid lowering treatment was reduced to 32 mg per day with 4.9% of the patients receiving ezetimibe and a statin. Of note, during this 4-month follow up period, only 32% of all patients received laboratory lipid testing. 37% attained the low density lipoprotein cholesterol (LDL-C) target value of <70 mg/dl after 120 days. There are differences in the therapy administered as well as in the switch strategies when comparing the data from the respective countries studied. Conclusions: Only one in three patients achieved the LDL-C target value following only marginal improvements in atorvastatin dose or combination therapy after an ACS event. Keywords: Low-density lipoprotein cholesterol, Treatment target, Global, Region, Statin

    Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia

    Get PDF
    PURPOSE: Congenital achromatopsia (ACHM) is an autosomal recessive disorder in which cone function is absent or severely reduced. Gene therapy in animal models of ACHM have shown restoration of cone function, though translation of these results to humans relies, in part, on the presence of viable cone photoreceptors at the time of treatment. Here, we characterized residual cone structure in subjects with CNGB3-associated ACHM. METHODS: High-resolution imaging (optical coherence tomography [OCT] and adaptive optics scanning light ophthalmoscopy [AOSLO]) was performed in 51 subjects with CNGB3-associated ACHM. Peak cone density and inter-cone spacing at the fovea was measured using split-detection AOSLO. Foveal outer nuclear layer thickness was measured in OCT images, and the integrity of the photoreceptor layer was assessed using a previously published OCT grading scheme RESULTS: Analyzable images of the foveal cones were obtained in 26 of 51 subjects, with nystagmus representing the major obstacle to obtaining high-quality images. Peak foveal cone density ranged from 7,273 to 53,554 cones/mm2, significantly lower than normal (range, 84,733–234,391 cones/mm2), with the remnant cones being either contiguously or sparsely arranged. Peak cone density was correlated with OCT integrity grade; however, there was overlap of the density ranges between OCT grades. CONCLUSIONS: The degree of residual foveal cone structure varies greatly among subjects with CNGB3-associated ACHM. Such measurements may be useful in estimating the therapeutic potential of a given retina, providing affected individuals and physicians with valuable information to more accurately assess the risk-benefit ratio as they consider enrolling in experimental gene therapy trials. (www.clinicaltrials.gov, NCT01846052.

    Evaluating the Suitability of Using Rat Models for Preclinical Efficacy and Side Effects with Inhaled Corticosteroids Nanosuspension Formulations

    Get PDF
    Inhaled corticosteroids (ICS) are often prescribed as first-line therapy for patients with asthma Despite their efficacy and improved safety profile compared with oral corticosteroids, the potential for systemic side effects continues to cause concern. In order to reduce the potential for systemic side effects, the pharmaceutical industry has begun efforts to generate new drugs with pulmonary-targeted topical efficacy. One of the major challenges of this approach is to differentiate both efficacy and side effects (pulmonary vs. systemic) in a preclinical animal model. In this study, fluticasone and ciclesonide were used as tool compounds to explore the possibility of demonstrating both efficacy and side effects in a rat model using pulmonary delivery via intratracheal (IT) instillation with nanosuspension formulations. The inhibition of neutrophil infiltration into bronchoalveolar lavage fluid (BALF) and cytokine (TNFα) production were utilized to assess pulmonary efficacy, while adrenal and thymus involution as well as plasma corticosterone suppression was measured to assess systemic side effects. Based on neutrophil infiltration and cytokine production data, the ED50s for ciclesonide and fluticasone were calculated to be 0.1 and 0.03 mg, respectively. At the ED50, the average adrenal involution was 7.6 ± 5.3% for ciclesonide versus 16.6 ± 5.1% for fluticasone, while the average thymus involution was 41.0 ± 4.3% for ciclesonide versus 59.5 ± 5.8% for fluticasone. However, the differentiation became less significant when the dose was pushed to the EDmax (0.3 mg for ciclesonide, 0.1 mg for fluticasone). Overall, the efficacy and side effect profiles of the two compounds exhibited differentiation at low to mid doses (0.03–0.1 mg ciclesonide, 0.01–0.03 mg fluticasone), while this differentiation diminished at the maximum efficacious dose (0.3 mg ciclesonide, 0.1 mg fluticasone), likely due to overdosing in this model. We conclude that the rat LPS model using IT administration of nanosuspensions of ICS is a useful tool to demonstrate pulmonary-targeted efficacy and to differentiate the side effects. However, it is only suitable at sub-maximum efficacious levels

    Evaluation of Aerosol Delivery of Nanosuspension for Pre-clinical Pulmonary Drug Delivery

    Get PDF
    Asthma and chronic obstructive pulmonary disease (COPD) are pulmonary diseases that are characterized by inflammatory cell infiltration, cytokine production, and airway hyper-reactivity. Most of the effector cells responsible for these pathologies reside in the lungs. One of the most direct ways to deliver drugs to the target cells is via the trachea. In a pre-clinical setting, this can be achieved via intratracheal (IT), intranasal (IN), or aerosol delivery in the desired animal model. In this study, we pioneered the aerosol delivery of a nanosuspension formulation in a rodent model. The efficiency of different dosing techniques and formulations to target the lungs were compared, and fluticasone was used as the model compound. For the aerosol particle size determination, a ten-stage cascade impactor was used. The mass median aerodynamic diameter (MMAD) was calculated based on the percent cumulative accumulation at each stage. Formulations with different particle size of fluticasone were made for evaluation. The compatibility of regular fluticasone suspension and nanosuspension for aerosol delivery was also investigated. The in vivo studies were conducted on mice with optimized setting. It was found that the aerosol delivery of fluticasone with nanosuspension was as efficient as intranasal (IN) dosing, and was able to achieve dose dependent lung deposition

    Angiotensinogen M235T gene variants and its association with essential hypertension and plasma renin activity in Malaysian subjects: A case control study

    Get PDF
    BACKGROUND: Essential hypertension is a major public health concern worldwide where its prevalence accounts for various cerebrovascular diseases. A common molecular variant of angiotensinogen (AGT), the precursor of potent vasoactive hormone angiotensin II, has been incriminated as a marker for genetic predisposition to essential hypertension in some ethnics. This case-control study was designed not only to determine the association of the AGT M235T gene variants with essential hypertension, but also its relationship to Plasma Renin Activity (PRA) in subjects attending the Health Clinic, Kuala Lumpur, Malaysia. METHODS: The study involved 188 subjects, 101 hypertensives and 87 normotensives. Consents were obtained from all the participated subjects. M235T gene variants were investigated using allele specific polymerase chain reaction and PRA was determined by radioimmunoassay. Hypertensinogenic factors such as dietary habits, physical activity, smoking and drinking habits were assessed using a pre-tested questionnaire. RESULTS: The genotype and allele distribution of the M235T variant differed significantly in hypertensives and normotensives (χ(2 = )23.184, P < 0.001 and χ(2 )= 21.482, P < 0.001, respectively). The odds ratio for hypertension was 1.36 (95% confidence interval 1.03–1.80) for subjects with homozygous mutated allele TT of the M235T variant compared with other genotypes or 1.98 (95% confidence interval 1.46–2.67) for those carrying T allele compared to those carrying M allele. Plasma Renin Activity is also significantly higher in hypertensive subjects (PRA = 3.8 ± 2.5 ngAI/ml/hr for hypertensives, PRA = 2.6 ± 1.3 ngAI/ml/hr for normotensives, P < 0.001), but was not significantly different between groups of genotypes (P = 0.118). CONCLUSION: The M235T variant of the AGT is significantly associated with essential hypertension whereas the genotype TT or allele T is a possible genetic marker or risk factor for hypertension in Malaysian subjects

    The Impact of Matching Vaccine Strains and Post-SARS Public Health Efforts on Reducing Influenza-Associated Mortality among the Elderly

    Get PDF
    Public health administrators do not have effective models to predict excess influenza-associated mortality and monitor viral changes associated with it. This study evaluated the effect of matching/mismatching vaccine strains, type/subtype pattern changes in Taiwan's influenza viruses, and the impact of post-SARS (severe acute respiratory syndrome) public health efforts on excess influenza-associated mortalities among the elderly. A negative binomial model was developed to estimate Taiwan's monthly influenza-associated mortality among the elderly. We calculated three winter and annual excess influenza-associated mortalities [pneumonia and influenza (P&I), respiratory and circulatory, and all-cause] from the 1999–2000 through the 2006–2007 influenza seasons. Obtaining influenza virus sequences from the months/years in which death from P&I was excessive, we investigated molecular variation in vaccine-mismatched influenza viruses by comparing hemagglutinin 1 (HA1) of the circulating and vaccine strains. We found that the higher the isolation rate of A (H3N2) and vaccine-mismatched influenza viruses, the greater the monthly P&I mortality. However, this significant positive association became negative for higher matching of A (H3N2) and public health efforts with post-SARS effect. Mean excess P&I mortality for winters was significantly higher before 2003 than after that year [mean ± S.D.: 1.44±1.35 vs. 0.35±1.13, p = 0.04]. Further analysis revealed that vaccine-matched circulating influenza A viruses were significantly associated with lower excess P&I mortality during post-SARS winters (i.e., 2005–2007) than during pre-SARS winters [0.03±0.06 vs. 1.57±1.27, p = 0.01]. Stratification of these vaccine-matching and post-SARS effect showed substantial trends toward lower elderly excess P&I mortalities in winters with either mismatching vaccines during the post-SARS period or matching vaccines during the pre-SARS period. Importantly, all three excess mortalities were at their highest in May, 2003, when inter-hospital nosocomial infections were peaking. Furthermore, vaccine-mismatched H3N2 viruses circulating in the years with high excess P&I mortality exhibited both a lower amino acid identity percentage of HA1 between vaccine and circulating strains and a higher numbers of variations at epitope B. Our model can help future decision makers to estimate excess P&I mortality effectively, select and test virus strains for antigenic variation, and evaluate public health strategy effectiveness

    Longitudinal Evaluation of an N-Ethyl-N-Nitrosourea-Created Murine Model with Normal Pressure Hydrocephalus

    Get PDF
    Normal-pressure hydrocephalus (NPH) is a neurodegenerative disorder that usually occurs late in adult life. Clinically, the cardinal features include gait disturbances, urinary incontinence, and cognitive decline.Herein we report the characterization of a novel mouse model of NPH (designated p23-ST1), created by N-ethyl-N-nitrosourea (ENU)-induced mutagenesis. The ventricular size in the brain was measured by 3-dimensional micro-magnetic resonance imaging (3D-MRI) and was found to be enlarged. Intracranial pressure was measured and was found to fall within a normal range. A histological assessment and tracer flow study revealed that the cerebral spinal fluid (CSF) pathway of p23-ST1 mice was normal without obstruction. Motor functions were assessed using a rotarod apparatus and a CatWalk gait automatic analyzer. Mutant mice showed poor rotarod performance and gait disturbances. Cognitive function was evaluated using auditory fear-conditioned responses with the mutant displaying both short- and long-term memory deficits. With an increase in urination frequency and volume, the mutant showed features of incontinence. Nissl substance staining and cell-type-specific markers were used to examine the brain pathology. These studies revealed concurrent glial activation and neuronal loss in the periventricular regions of mutant animals. In particular, chronically activated microglia were found in septal areas at a relatively young age, implying that microglial activation might contribute to the pathogenesis of NPH. These defects were transmitted in an autosomal dominant mode with reduced penetrance. Using a whole-genome scan employing 287 single-nucleotide polymorphic (SNP) markers and further refinement using six additional SNP markers and four microsatellite markers, the causative mutation was mapped to a 5.3-cM region on chromosome 4.Our results collectively demonstrate that the p23-ST1 mouse is a novel mouse model of human NPH. Clinical observations suggest that dysfunctions and alterations in the brains of patients with NPH might occur much earlier than the appearance of clinical signs. p23-ST1 mice provide a unique opportunity to characterize molecular changes and the pathogenic mechanism of NPH

    Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression

    Get PDF
    Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood. In order to find common transcriptional pathways associated to dormancy release, we analyzed the chilling-dependent expression in embryos of certain genes that were previously found related to dormancy in flower buds of peach. We propose the presence of short and long-term dormancy events affecting respectively the germination rate and seedling development by independent mechanisms. Short periods of chilling seem to improve germination in an abscisic acid-dependent manner, whereas the positive effect of longer cold treatments on physiological dwarfing coincides with the accumulation of phenylpropanoids in the seed
    corecore