80 research outputs found

    The site-specific primary calibration conditions for the Brewer spectrophotometer

    Get PDF
    The Brewer ozone spectrophotometer (the Brewer) is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)’s standard ozone-monitoring instruments since the 1980s. The entire global Brewer ozone-monitoring network is operated and maintained via a hierarchical calibration chain, which started from world reference instruments that are independently calibrated via the primary calibration method (PCM) at a premium site (National Oceanic and Atmospheric Administration’s (NOAA) Mauna Loa Observatory, Hawaii). These world reference instruments have been maintained by Environment and Climate Change Canada (ECCC) in Toronto for the last 4 decades. Their calibration is transferred to the travelling standard instrument and then to network (field) Brewer instruments at their monitoring sites (all via the calibration transfer method; CTM)

    Relatório de estágio em farmácia comunitária

    Get PDF
    Relatório de estágio realizado no âmbito do Mestrado Integrado em Ciências Farmacêuticas, apresentado à Faculdade de Farmácia da Universidade de Coimbr

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Assessment of sorbent impregnated PUF disks (SIPs) for long-term sampling of legacy POPs

    No full text
    Two field studies were conducted for one year using sorbent-impregnated polyurethane foam (SIP) disks for PCB and PBDE air sampling. SIP disks were introduced by Shoeib et al. (2008) as an alternative passive air sampling medium to the polyurethane foam (PUF) disk and have the advantage of a higher holding capacity for organic chemicals. The first study on SIP disks confirmed their application for measuring volatile perfluorinated compounds (PFCs) and their ability to maintain time-integrated (linear) air sampling. In this study, the suitability of the SIP disks for long-term sampling of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and hexachlorobenzene (HCB) was assessed. SIP disks were deployed at a rural site in the UK and harvested after periods ranging from 35-350 days. Atmospheric POP concentrations were monitored with a high-volume air sampler during the deployment period. Linear uptake was observed for all monitored PCBs and PBDEs over the full exposure time. Air-sampler equilibrium was observed for HCB after 6 months. In a second field study, SIP disks were deployed for one year at 10 sites on a latitudinal transect in the UK and Norway, at which air sampling has been undertaken previously with different passive air sampling media since 1994. The estimated concentrations and spatial distributions derived from the SIP disks were largely in agreement with previously reported data

    Polychlorinated naphthalenes in the Global Atmospheric Passive Sampling (GAPs) study.

    No full text
    Air concentrations of polychlorinated naphthalenes (PCNs) were measured as part of the Global Atmospheric Passive Sampling (GAPS) study to assess their spatial distribution on a worldwide basis for the first sampling period between December 2004 and March 2005. Results from more than 40 sites on seven continents show that PCNs are widespread, and highest levels are detected in urban/industrial locations consistent with other air sampling studies. The geometric mean air concentration of ΣPCN is 1.6 pg/m3, ranging from below detection limit to 32 pg/m3. With technical PCN mixtures largely no longer produced, combustion inputs may be contributing increasingly to contemporary PCN air burden globally. Enrichment of combustion-related congeners, e.g., PCN-52/60, -50, -51, -54, and -66/67, is observed in the congeneric compositions of air at nearly all sites compared to relatively minor contribution of these congeners in technical PCN formulations. Further evidence of current combustion sources influencing global PCN levels is a higher relative abundance of combustion-related congeners quantified by ΣPCNcombustion/ΣPCN. The relative contribution by combustion sources and emissions from technical PCN mixtures is expected to vary among sites since it depends on the combustion sources and the technical mixture used in a particular country or region

    Elevation of a Novel Angiogenic Factor, Leucine-Rich- 2-Glycoprotein (LRG1), Is Associated With Arterial Stiffness, Endothelial Dysfunction, and Peripheral Arterial Disease in Patients With Type 2 Diabetes

    No full text
    Increased arterial stiffness and endothelial dysfunction are associated with peripheral arterial disease (PAD). Leucine-rich-α2-glycoprotein (LRG1) is a proangiogenic factor involved in regulation of the TGFβ signaling pathway. - See more at: http://press.endocrine.org/doi/10.1210/jc.2014-3855#sthash.gUX7rdfy.dpufNMRC (Natl Medical Research Council, S’pore)Accepted versio
    corecore