1,595 research outputs found

    Universality classes in directed sandpile models

    Full text link
    We perform large scale numerical simulations of a directed version of the two-state stochastic sandpile model. Numerical results show that this stochastic model defines a new universality class with respect to the Abelian directed sandpile. The physical origin of the different critical behavior has to be ascribed to the presence of multiple topplings in the stochastic model. These results provide new insights onto the long debated question of universality in abelian and stochastic sandpiles.Comment: 5 pages, RevTex, includes 9 EPS figures. Minor english corrections. One reference adde

    Corrections to scaling in the forest-fire model

    Get PDF
    We present a systematic study of corrections to scaling in the self-organized critical forest-fire model. The analysis of the steady-state condition for the density of trees allows us to pinpoint the presence of these corrections, which take the form of subdominant exponents modifying the standard finite-size scaling form. Applying an extended version of the moment analysis technique, we find the scaling region of the model and compute the first non-trivial corrections to scaling.Comment: RevTeX, 7 pages, 7 eps figure

    Hyperbolicity Measures "Democracy" in Real-World Networks

    Full text link
    We analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. In our interpretation, a network with small hyperbolicity is "aristocratic", because it contains a small set of vertices involved in many shortest paths, so that few elements "connect" the systems, while a network with large hyperbolicity has a more "democratic" structure with a larger number of crucial elements. We prove mathematically the soundness of this interpretation, and we derive its consequences by analyzing a large dataset of real-world networks. We confirm and improve previous results on hyperbolicity, and we analyze them in the light of our interpretation. Moreover, we study (for the first time in our knowledge) the hyperbolicity of the neighborhood of a given vertex. This allows to define an "influence area" for the vertices in the graph. We show that the influence area of the highest degree vertex is small in what we define "local" networks, like most social or peer-to-peer networks. On the other hand, if the network is built in order to reach a "global" goal, as in metabolic networks or autonomous system networks, the influence area is much larger, and it can contain up to half the vertices in the graph. In conclusion, our newly introduced approach allows to distinguish the topology and the structure of various complex networks

    On the scaling behavior of the abelian sandpile model

    Full text link
    The abelian sandpile model in two dimensions does not show the type of critical behavior familar from equilibrium systems. Rather, the properties of the stationary state follow from the condition that an avalanche started at a distance r from the system boundary has a probability proportional to 1/sqrt(r) to reach the boundary. As a consequence, the scaling behavior of the model can be obtained from evaluating dissipative avalanches alone, allowing not only to determine the values of all exponents, but showing also the breakdown of finite-size scaling.Comment: 4 pages, 5 figures; the new version takes into account that the radius distribution of avalanches cannot become steeper than a certain power la

    Non conservative Abelian sandpile model with BTW toppling rule

    Full text link
    A non conservative Abelian sandpile model with BTW toppling rule introduced in [Tsuchiya and Katori, Phys. Rev. E {\bf 61}, 1183 (2000)] is studied. Using a scaling analysis of the different energy scales involved in the model and numerical simulations it is shown that this model belong to a universality class different from that of previous models considered in the literature.Comment: RevTex, 5 pages, 6 ps figs, Minor change

    Universality in sandpiles

    Get PDF
    We perform extensive numerical simulations of different versions of the sandpile model. We find that previous claims about universality classes are unfounded, since the method previously employed to analyze the data suffered a systematic bias. We identify the correct scaling behavior and conclude that sandpiles with stochastic and deterministic toppling rules belong to the same universality class.Comment: 4 pages, 4 ps figures; submitted to Phys. Rev.

    Energy constrained sandpile models

    Get PDF
    We study two driven dynamical systems with conserved energy. The two automata contain the basic dynamical rules of the Bak, Tang and Wiesenfeld sandpile model. In addition a global constraint on the energy contained in the lattice is imposed. In the limit of an infinitely slow driving of the system, the conserved energy EE becomes the only parameter governing the dynamical behavior of the system. Both models show scale free behavior at a critical value EcE_c of the fixed energy. The scaling with respect to the relevant scaling field points out that the developing of critical correlations is in a different universality class than self-organized critical sandpiles. Despite this difference, the activity (avalanche) probability distributions appear to coincide with the one of the standard self-organized critical sandpile.Comment: 4 pages including 3 figure

    Logarithmic corrections of the avalanche distributions of sandpile models at the upper critical dimension

    Full text link
    We study numerically the dynamical properties of the BTW model on a square lattice for various dimensions. The aim of this investigation is to determine the value of the upper critical dimension where the avalanche distributions are characterized by the mean-field exponents. Our results are consistent with the assumption that the scaling behavior of the four-dimensional BTW model is characterized by the mean-field exponents with additional logarithmic corrections. We benefit in our analysis from the exact solution of the directed BTW model at the upper critical dimension which allows to derive how logarithmic corrections affect the scaling behavior at the upper critical dimension. Similar logarithmic corrections forms fit the numerical data for the four-dimensional BTW model, strongly suggesting that the value of the upper critical dimension is four.Comment: 8 pages, including 9 figures, accepted for publication in Phys. Rev.

    Casein haplotype structure in five Italian goat breeds

    Get PDF
    The aim of this work was to investigate the genetic structure of the casein gene cluster in 5 Italian goat breeds and to evaluate the haplotype variability within and among populations. A total of 430 goats from Vallesana, Roccaverano, Jonica, Garganica, and Maltese breeds were genotyped at alphas1-casein (CSN1S1), alphas2-casein, (CSN1S2), beta-casein (CSN2), and kappa-casein (CSN3) loci using several genomic techniques and milk protein analysis. Casein haplotype frequencies were estimated for each breed. Principal component analysis was carried out to highlight the relationship among breeds. Allele and haplotype distributions indicated considerable differences among breeds. The haplotype CSN1S1*F- CSN1S2*F-CSN3*D occurred in all breeds with frequencies >0.100 and was the most common haplotype in the Southern breeds. A high frequency of CSN1S1*0-CSN1S2*C-CSN3*A haplotype was found in Vallesana population (0.162). Principal component analysis clearly separated the Northern and Southern breeds by the first component. The variability of the caprine casein loci and variety of resulting haplotypes should be exploited in the future using specific breeding programs aiming to preserve biodiversity and to select goat genetic lines for specific protein production
    corecore