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We study two driven dynamical systems with conserved energy. The two automata contain the
dynamical rules of the Bak, Tang, and Wiesenfeld sandpile model. In addition a global const
on the energy contained in the lattice is imposed. In the limit of an infinitely slow driving of t
system, the conserved energyE becomes the only parameter governing the dynamical behavior of
system. Both models show scale-free behavior at a critical valueEc of the fixed energy. The scaling
with respect to the relevant scaling field points out that the developing of critical correlations is
different universality class than self-organized critical sandpiles. Despite this difference, the act
(avalanche) probability distributions appear to coincide with the one of the standard self-organ
critical sandpile. [S0031-9007(98)06024-4]

PACS numbers: 64.60.Lx, 05.40.+ j, 05.70.Ln, 46.10.+z
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In the study of nonequilibrium critical phenomena, ce
lular automata (CA) showing self-organized criticali
(SOC) have acquired a very special role [1,2]. Differen
from the usual continuous phase transitions, they wo
spontaneously evolve into a critical state without expli
fine tuning of control parameters. Another reason of
terest lies in the fact that numerical computations ba
on SOC ideas have shown that slowly driven systems
lead to a stationary state with a dynamical activity char
terized by avalanches of widely distributed amplitude [
Avalanche behavior is a basic feature of many experim
tally observed phenomena ranging from magnetic syst
[3] to microfracturing process [4] and earthquakes [
The prototypical model for SOC is represented by B
Tang, and Wiesenfeld (BTW) sandpile automata [1],
which an infinitesimally slow external driving of sand pa
ticles associated with a threshold rearrangement dynam
leads to a stationary state with activity (avalanches) d
tributed on all length scales [1]. More widely, the mod
is generalized by identifying the sand grain as ener
stress, or pressure quanta. In this way the analogy w
other physical phenomena appears more clearly.

Despite the vast activity in the field, the general pictu
of SOC phenomena contains many ambiguities. It
been pointed out by several authors [2,6,7] that the driv
rate acts exactly as a control parameter that has to be
tuned to zero in order to observe criticality. For instan
in sandpile the stationary state results from the bala
of the driving field and dissipation rates intrinsical
operating because of the system open boundary.
critical point is reached only through a limit process
which both driving and dissipation rates tend to ze
This point corresponds to a locality breaking of t
dynamical rules [7] that determines the onset of
critical correlation properties [8]. In this framework man
relations with nonequilibrium critical phenomena, su
0031-9007y98y80(19)y4217(4)$15.00
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as adsorbing critical point [9], have been enlightene
However, many important issues are still open. It
not clear the interplay among the self-organization in
a stationary state due to the energy balance and
dynamical developing of correlations. Also numerical
many important features, such as critical exponen
universality classes, and the upper critical dimension
very difficult to obtain to a sufficient degree of precisio
[10,11]. This is mainly due to the inherent strong effe
of finite size corrections present in the original mode
the boundary size plays an active role, being the o
dissipative ingredient leading to the stationary state [7]

In this Letter we introduce a stochastic CA whic
contains the basic elements of the sandpile model,
is defined on a lattice with periodic boundary condition
and has a global constraint in the energy accumulat
The average energy contained in the system is there
constant and fixed from the outside. This resemble
microcanonical definition of the sandpile automata. T
reason for studying this model is twofold: First, it seem
more appropriate to represent some phenomena in wh
the dissipation is not intrinsically linked to the activity o
the systems. Second, it could shed light on many pr
erties of the SOC sandpile by allowing its analysis
a framework which looks closer to the usual statistic
physics. Finally, it turns out that microcanonical san
piles do not suffer heavily of finite-size correction effec
because of the possibility of using effectively period
boundary conditions. Thus, the microcanonical sandp
could be used to settle universality classes and upper c
cal dimension issues.

We consider two models with conserved energy.
both we start from a given sand configurationheij, that
can be random or the result of a former run (if need
after modifying its energy), wherei  sx, yd labels theL2

sites of a2 2 d lattice with periodic boundary conditions
© 1998 The American Physical Society 4217
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The total amount of sand (the energy of the system)
E ;

P
i ei . The system is supposed to be in contact wi

an external reservoir with which it can exchange ener
in both directions; an incoming as well as an outcomin
energy flux is present. We think of the system as in a s
of thermal equilibrium with a fixed value of energy. Thi
implies the two fluxes on average are equal.

In both models, the first stage of the dynamics is t
addition of an energy unit on a random site. In order
preserve the total amount of energy, we have to introdu
an extraction flux that takes away one unit of energy fro
the system. We do that in two ways. In the first mod
(that we callrandom subtraction,RS) we take away one
unit of energy in a random site: this model is discret
and ei can only take integer values from0 to 4. In the
second model (with acontinuous subtraction,CS) we
have a homogeneous dissipation, where each site loo
energy proportionally to the local energy density. He
we transformei ! ei

E
E11 . The basic variables of this

second model are continuous, and can take values betw
0 and4.

The internal dynamics of both models is suppos
to be very fast with respect to the energy additio
and extraction rates, in analogy with the slow drivin
assumption commonly used in SOC models. After t
energy addition and extraction, the avalanching proce
follows in the usual way. Ifei is larger or equal to4 (the
critical threshold for local stability), the energy on the si
gets shared among the nearest neighbors sites (relaxa
event). On their turn, these sites can exceed the thresh
because of the energy received, and transfer their ene
on nearest neighbors sites, and so on. This proces
called an avalanche and it is followed until a stable state
reached. After the avalanche stops, the update contin
with the deposition and extraction of a new energy unit.

We impose periodic boundary condition on the syste
i.e., esi, 0d ; esi, L 1 1d and es0, jd ; esL 1 1, jd. In
the usual sandpile this would lead to troubles becauseE
can only increase. Thus after a finite time a state with
infinite avalanche that goes on forever is reached. T
state obviously is not related with the critical stationa
one. For this reason periodic boundary conditions ha
never been used to determine the critical properties
sandpile models. The price to pay for that is the inclusi
of the strong finite size corrections induced by the fini
boundary dissipation.

In the CS and RS models the energy dissipation
acting as an independent driving, while in the usu
sandpile it is always linked to the toppling event itself. I
SOC sandpile also the average energy is dependent u
driving and dissipation because of the energy balan
while in our microcanonical model this self-organizatio
is ruled out. Thus in these models, the total energyE
is a free parameter, that can be freely tuned. Here
will mainly present the CS model and some evidences
an analogous behavior of the RS discrete model, wh
4218
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the critical energy density turns out to coincide with th
stationary energy density of the BTW model.

We study the CS sandpile model as a function of t
control parameterE: we start with smallE (few energy)
and small correlation length, and we increaseE, keep-
ing the correlation length smaller that the lattice size
order to make finite size effects small (we present h
only results that do not change when going fromL  256
to L  512). We can characterize the system’s acti
ity by defining the probabilityPsssd that an avalanche is
constituted bys relaxation events. In the same way w
can study the probability distributionsPtstd and Psd ssdd
which refer to the avalanche time duration and number
distinct sites involved, respectively. WhenE ! Ec the
average avalanche sizeksl diverges, together with the av
erage avalanche durationktl and the average number o
differentsites touched during an avalanche,ksdl. The sys-
tem reaches in this case a critical point, and we have
termined numerically the probability distributionsPsssd,
Ptstd, andPsd ssdd as well as the exponents of their asym
totic power law decay.

In Fig. 1 we show the avalanche average size,ksl, for
L  512, as a function ofE, together with the best fit to
a simple power divergence (done by using all the poin
plotted in the figure). We fit the asymptotic behavior:

ksl ,
1

sEc 2 Edg
, (1)

and we findEc  2.596 6 0.001 and g  1.41 6 0.03
[12]. The average avalanche size can be shown to s
asymptotically as the system response functionxE , that
impliesxE , sEc 2 Ed2g . The latter expression charac
terizes how the system reacts to external perturbations

For the energy range whereksl . 20 we have com-
puted an effective, energy dependent power exponent
the avalanche distribution. We show in Fig. 2 the typic
situation (forL  512, atE  2.586): since we are not at
Ec the power law decay is truncated (at a value that tu
out to be of orderksl). We always fit the power law,
Psssd , s2ts in a range ofs that goes from1 to kslsLd.
One sees from the figure that the fit (the dashed stra

FIG. 1. ksl versusE, with the best fit to a power divergence
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FIG. 2. Psssd versuss in log-log scale (the solid line is a
smooth interpolation of the numerical data) and best powe
(see text).

line) is very good on three decades (the solid line is
smooth interpolation to the numerical data).

The exponents one finds at finitesEc 2 Ed have to
be extrapolated to the critical point. We fitts to an
asymptotic value with corrections linear in logsEc 2

Ed21 (by following Manna [13]): we find tssEcd 
1.26 6 0.02, where again the error is only statistica
Still, in the limit of such a statistical accuracy (that
of the same level it can be reached for the BTW mod
we find the same exponent that is believed to describe
BTW scaling. The same procedure works for the tim
duration of an avalanche. Here by assuming that

ktl ,
1

sEc 2 Edu
, (2)

we find a very good best fit withEc  2.597 6 0.001 and
u  0.80 6 0.04. With the same approach used forPsssd
we find thatPtstd , t2tt , wherettsEcd  1.49 6 0.04.
It is worth remarking that in measuring the time durati
of an avalanche different definitions of time can be us
Here we adopt the one commonly implemented in S
automata: at each integer time step all currently ac
sites topple. Again, in the error bars given by the fitti
procedure, we find a remarkable agreement with
tt 

3
2 that one expects for the BTW model. The sam

procedure applied to the different sites touched from
avalanche,ksdl, leads again to a divergence atEc  2.597
with an exponent equal to1.34 6 0.03. Again, Psd

ssdd
shows a clear power law behavior, and we find t
tsd sEcd  1.27 6 0.04, again in good agreement with th
BTW result.

We can also define a natural characteristic length in
system. In general, close to the critical point the avalan
distribution has the scaling form

Pssd  s2tG

µ
s
sc

∂
, (3)

where Gsxd is a universal function andsc is the
avalanche cutoff size. The latter is the system ch
fit
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acteristic length that close to the critical point scales
sc , sEc 2 Ed21ys. In order to test the scaling assum
tion and find an estimate of thes exponent we have use
a data collapse technique. For energy values close to
critical one, the plot ofPssdysEc 2 Edtys as a function of
the rescaled variablesysEc 2 Ed21ys must collapse into
the same universal curve by using the correct values ot

ands. In Fig. 3 we show the data collapse from avalanc
distributions obtained withsEc 2 Ed ranging over almost
1 order of magnitude. The values we obtain for the
ponents aret  1.20 6 0.05 ands  0.55 6 0.03. By
using Eq. (3), we can immediately write the relation

ksl 
Z

s2t11Pssd ds , sEc 2 Edst22dys , (4)

which immediately gives the scaling relationg  s2 2

tdys. The latter relation is satisfied by the exponent v
ues we obtain, providing a further consistency check
the numerical results. In the usual sandpile models, a
tionary state is reached only if we allow the system
dissipate energy through its boundary or an effective b
dissipation. Characteristic lengths and scaling expone
can thus be defined with respect to the effective dis
pation or boundary length and actually measured in
merical simulations [7]. It is interesting to remark th
the values of critical exponents obtained from nume
cal simulations of the usual sandpiles (g  1, s  0.77
[14]) are very different from those obtained in the pres
paper.

From the previous analysis we can therefore iden
two main dynamical mechanisms in SOC models. T
first is the self-organization that is driven by the ener
balance condition. The sandpile evolves in order to se
energy density so that the avalanche finds a backgro
that allows it to dissipate enough energy. This proc
does not imply criticality. The second mechanism is t
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FIG. 3. Scaling plot ofPssdysEc 2 Edtys versus syjEc 2
Ej21ys in a log-log scale. For the sake of clarity we repo
also binned data points on top of the full data curves.
4219
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dynamical interaction which builds up in the system t
long range correlations which on its turn create the criti
avalanche distribution. This is just in the presence of
locality breaking obtained in the limit of infinite slow
driving of the system. In our microcanonical versio
of the model, we control the energy self-organizati
from outside. The critical point is thus reached just
the presence of the critical energy density which allo
the slow driving to generate the critical configuratio
for the system. These two different ways of reach
the critical point appear to generate different scal
properties with respect to the control parameter. On
contrary the scaling behavior properties right at critical
result in being the same, within the numerical accura
of our simulations, in both SOC and energy constrain
sandpiles automata. With the SOC sandpile and
present model being in different universality class
this latter result appears to be very puzzling. In t
case, only the presence of strong internal symmet
could give rise to an invariantt exponent. This makes
it also worthwhile to investigate if the model retain
this symmetry in higher Euclidean dimensions. On t
other hand, larger size simulations are needed in o
to definitely rule out finite size bias in the exponen
evaluation.

Finally, we report that the RS model shows the sa
kind of behavior. It is crucial to note that here w
find Ec  2.127 6 0.004 to be compared with theEc 
2.125 that Grassberger and Manna [15] find for BTW
The energy where the model becomes critical is exa
the energy reached from BTW in the steady state. Thi
because the RS model has a microscopic dynamics w
is identical to the SOC BTW model. The difference
in the way the system is driven to criticality and th
in the energy constraint. This allows us to compa
directly nonuniversal quantities right at the critical poin
that should assume the same values in both models.
critical behavior of this model is characterized by t
same critical exponents of the CS model. This see
to support the idea that the CS and RS models bel
to the same universality class. Thus, the homogene
dissipation does not introduce any relevant difference w
respect to the fully stochastic RS model. The detai
presentation of the RS model numerical data will app
in a forthcoming paper [16].

We are grateful to R. Dickman and S. Zapperi f
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Cagliari Physics Department). We thank Gianni Mula fo
leading the effort toward organizing this computer facility
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