We analyze the hyperbolicity of real-world networks, a geometric quantity
that measures if a space is negatively curved. In our interpretation, a network
with small hyperbolicity is "aristocratic", because it contains a small set of
vertices involved in many shortest paths, so that few elements "connect" the
systems, while a network with large hyperbolicity has a more "democratic"
structure with a larger number of crucial elements.
We prove mathematically the soundness of this interpretation, and we derive
its consequences by analyzing a large dataset of real-world networks. We
confirm and improve previous results on hyperbolicity, and we analyze them in
the light of our interpretation.
Moreover, we study (for the first time in our knowledge) the hyperbolicity of
the neighborhood of a given vertex. This allows to define an "influence area"
for the vertices in the graph. We show that the influence area of the highest
degree vertex is small in what we define "local" networks, like most social or
peer-to-peer networks. On the other hand, if the network is built in order to
reach a "global" goal, as in metabolic networks or autonomous system networks,
the influence area is much larger, and it can contain up to half the vertices
in the graph. In conclusion, our newly introduced approach allows to
distinguish the topology and the structure of various complex networks