37 research outputs found

    Phosphorylation of human platelet glycoprotein IIIa (GPIIIa) : dissociation from fibrinogen receptor activation and phosphorylation of GPIIIa in vitro

    Get PDF
    Glycoprotein IIb-IIIa (GPIIb-IIIa) is the fibrinogen receptor on activated platelets. GPIIIa is phosphorylated in resting platelets and the incorporation of 32Pi increases with platelet activation. To address the functional significance of this modification, the stoichiometry of GPIIIa phosphorylation was determined in resting and activated platelets by estimating the specific activity of metabolic [gamma-32P]ATP from the specific activity of phosphatidic acid. Approximately 0.01 mol of P/mol of GPIIIa was phosphorylated in resting platelets and 0.03 mol of P/mol of GPIIIa was phosphorylated in thrombin-, phorbol ester-, or U46619-treated platelets. Myosin light chain (MLC) phosphorylation served as a positive control for this method (1.2 mol of P/mol of MLC). Phosphorylation of purified GPIIb-IIIa by human platelet protein kinase C (PKC) resulted in levels of GPIIIa phosphorylation similar to that in platelets (0.05 mol of P/mol of GPIIIa). However, while GPIIIa in platelets was phosphorylated primarily on threonine, purified GPIIIa treated with PKC was phosphorylated primarily on serine. These results suggest that PKC may not directly phosphorylate GPIIIa in intact platelets. Ca2+/calmodulin-dependent kinase II phosphorylated purified GPIIIa to higher levels (0.5 mol of P/mol of GPIIIa) with phosphorylation on both threonine and serine. The limited phosphorylation of GPIIIa in intact platelets suggests that this event is unlikely to affect functions involving large populations of GPIIb-IIIa, such as its conversion to a fibrinogen receptor. However, these results may suggest the existence of a more readily phosphorylated subpopulation of GPIIb-IIIa with potentially distinct structural or functional properties

    Fibrinogen binding to purified platelet glycoprotein IIb-IIIa (integrin alpha IIb beta 3) is modulated by lipids.

    Get PDF
    Soluble fibrinogen binding to the glycoprotein IIb-IIIa complex (integrin alpha IIb beta 3) requires platelet activation. The intracellular mediator(s) that convert glycoprotein IIb-IIIa into an active fibrinogen receptor have not been identified. Because the lipid composition of the platelet plasma membrane undergoes changes during activation, we investigated the effects of lipids on the fibrinogen binding properties of purified glycoprotein IIb-IIIa. Anion exchange chromatography of lipids extracted from platelets exposed to thrombin or other platelet agonists resolved an activity that increased fibrinogen binding to glycoprotein IIb-IIIa. A monoester phosphate was important for activity, and phosphatidic acid coeluted with the peak of activity. Purified phosphatidic acid dose-dependently promoted a specific interaction between glycoprotein IIb-IIIa and fibrinogen which possessed many but not all of the properties of fibrinogen binding to activated platelets. Phosphatidic acid appeared to increase the proportion of fibrinogen binding-competent glycoprotein IIb-IIIa complexes without altering their affinity for fibrinogen. The effects of phosphatidic acid were a result of specific structural properties of the lipid and were not mimicked by other phospholipids. Lysophosphatidic acid, however, was a potent inducer of fibrinogen binding to glycoprotein IIb-IIIa. These results demonstrate that specific lipids can affect fibrinogen binding to purified glycoprotein IIb-IIIa and suggest that the lipid environment has the potential to influence fibrinogen binding to its receptor

    Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    Get PDF
    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology

    Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase

    Get PDF
    Our findings demonstrate an integral role of the p38 mitogen-activated protein kinase pathway in interleukin 6-mediated cardiac contractile dysfunction and inotrope insensitivity. Dysregulation of the p38 mitogen-activated protein kinase pathway in meningococcal septicemia suggests that this pathway may be an important target for novel therapies to reverse myocardial dysfunction in patients with meningococcal septic shock who are not responsive to inotropic support

    Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests

    Get PDF
    At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Methyl methacrylate and respiratory sensitization: A Critical review

    Get PDF
    Methyl methacrylate (MMA) is a respiratory irritant and dermal sensitizer that has been associated with occupational asthma in a small number of case reports. Those reports have raised concern that it might be a respiratory sensitizer. To better understand that possibility, we reviewed the in silico, in chemico, in vitro, and in vivo toxicology literature, and also epidemiologic and occupational medicine reports related to the respiratory effects of MMA. Numerous in silico and in chemico studies indicate that MMA is unlikely to be a respiratory sensitizer. The few in vitro studies suggest that MMA has generally weak effects. In vivo studies have documented contact skin sensitization, nonspecific cytotoxicity, and weakly positive responses on local lymph node assay; guinea pig and mouse inhalation sensitization tests have not been performed. Cohort and cross-sectional worker studies reported irritation of eyes, nose, and upper respiratory tract associated with short-term peaks exposures, but little evidence for respiratory sensitization or asthma. Nineteen case reports described asthma, laryngitis, or hypersensitivity pneumonitis in MMA-exposed workers; however, exposures were either not well described or involved mixtures containing more reactive respiratory sensitizers and irritants.The weight of evidence, both experimental and observational, argues that MMA is not a respiratory sensitizer

    USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    Get PDF
    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis
    corecore