755 research outputs found

    Planning the forest transport systems based on the principles of sustainable development of territories

    Get PDF
    The article identifies a new method of dynamic modeling in the design of the transport system in the forest fund (TSFF), which is based on economic and mathematical modeling and fuzzy logic tools. The combination of the indicated methods is designed to reduce the disadvantages of their use and increase the benefits. The article substantiates the choice of assessing the forecast level of the impact of risks on the activities of forestry enterprises (the method of expert assessments), using the methodological tools of fuzzy logic. The indicated method makes it possible to take into account a large variety of risk factors of the internal and external environment. At the same time, methodological aspects of fuzzy logic make it possible to formulate a quantitative assessment of qualitative indicators. The article substantiates the choice of tools for economic and mathematical modeling in order to state the design problem of the planned TSFF. Since the indicated method enables the formalization of the functioning of the timber transport system in the given conditions. The article presents a developed model that correctly takes into account the influence of risk factors when planning a TSFF, through the combination of fuzzy logic methods and economic and mathematical modeling. The advantages of the developed model include: considering the multivariance of material flows, vehicles, points of overload, etc.; automated processing of input parameters and effective data; using the model for forecasting, i.e. the possibility of deriving a fuzzy estimate of the efficiency of the timber transport system by identifying cause-effect relationships between the modeling object and the influence of risk factors on its functioning. Β© 2019 IOP Publishing Ltd

    The influence of English colonization on culture of Australians

    Get PDF

    E2 strengths and transition radii difference of one-phonon 2+ states of 92Zr from electron scattering at low momentum transfer

    Full text link
    Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized by a sign change between dominant proton and neutron valence-shell components with respect to the fully symmetric 2+ state. The sign can be measured by a decomposition of proton and neutron transition radii with a combination of inelastic electron and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106, 062501 (2011)]. For the case of 92Zr, a difference could be experimentally established for the neutron components, while about equal proton transition radii were indicated by the data. Method: Differential cross sections for the excitation of one-phonon 2+ and 3- states in 92Zr have been measured with the (e,e') reaction at the S-DALINAC in a momentum transfer range q = 0.3-0.6 fm^(-1). Results: Transition strengths B(E2;2+_1 -> 0+_1) = 6.18(23), B(E2; 2+_2 -> 0+_1) = 3.31(10) and B(E3; 3-_1 -> 0+_1) = 18.4(11) Weisskopf units are determined from a comparison of the experimental cross sections to quasiparticle-phonon model (QPM) calculations. It is shown that a model-independent plane wave Born approximation (PWBA) analysis can fix the ratio of B(E2) transition strengths to the 2+_(1,2) states with a precision of about 1%. The method furthermore allows to extract their proton transition radii difference. With the present data -0.12(51) fm is obtained. Conclusions: Electron scattering at low momentum transfers can provide information on transition radii differences of one-phonon 2+ states even in heavy nuclei. Proton transition radii for the 2+_(1,2) states in 92Zr are found to be identical within uncertainties. The g.s. transition probability for the mixed-symmetry state can be determined with high precision limited only by the available experimental information on the B(E2; 2+_1 -> 0+_1) value.Comment: 14 pages, 5 figures, submitted to Phys. Rev. C, revised manuscrip

    Early Permian Conodont Fauna and Stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    Get PDF
    The lower part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to late Wordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore

    Multilevel Parallelization: Grid Methods for Solving Direct and Inverse Problems

    Get PDF
    In this paper we present grid methods which we have developed for solving direct and inverse problems, and their realization with different levels of optimization. We have focused on solving systems of hyperbolic equations using finite difference and finite volume numerical methods on multicore architectures. Several levels of parallelism have been applied: geometric decomposition of the calculative domain, workload distribution over threads within OpenMP directives, and vectorization. The run-time efficiency of these methods has been investigated. These developments have been tested using the astrophysics code AstroPhi on a hybrid cluster Polytechnic RSC PetaStream (consisting of Intel Xeon Phi accelerators) and a geophysics (seismic wave) code on an Intel Core i7-3930K multicore processor. We present the results of the calculations and study MPI run-time energy efficiency

    Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ 1-Π°Π»ΠΊΡ–Π»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρ–Π²

    Get PDF
    An effective approach for synthesis of 5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione by 1,1’-carbonyldiimidazole promoted interaction of 5-methyl-2,4-dioxo-3-phenyl-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidine-6-carboxylic acid with benzohydrazide has been developed. The procedure also includes cyclization of N’-benzoyl-5-methyl-2,4-dioxo-3-phenyl-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidine-6-carbohydrazide obtained by boiling in phosphorous oxychloride and further hydrolysis of the chlorine atom at position 2 of the thieno[2,3-d]pyrimidine system. Alkylation of the assembly of two heterocyclic units obtained with benzyl chlorides, chloroacetamides, and 5-(chloromethyl)-3-aryl-1,2,4-oxadiazoles has allowed obtaining of 1-alkyl-5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones. The structures of the compounds obtained have been confirmed by the 1H NMR, chromato-mass spectral and elemental microanalysis data. The results of the screening performed by the agar diffusion method (β€œwell method”) have shown the absence of the antimicrobial activity for 1-benzyl-5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones and 2-[5-methyl-2,4-dioxo-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl]-N-arylacetamides; but the activity for 1-{[3-aryl-1,2,4-oxadiazol-5-yl]methyl}-5-methyl-3-phenyl-6-(5-phenyl-1,3,4-oxadiazol-2-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones has been found. The compounds of this range appeared to be active against the strains of Staphylococcus aureus, Escherichia coli and Bacillus subtilis; the diameters of their growth inhibition zones were similar to those for the reference drugs Metronidazole and Streptomycin.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ эффСктивный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ синтСзу 5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½Π° ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ 1,1’-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»Π΄ΠΈΠΈΠΌΠΈΠ΄Π°Π·ΠΎΠ»ΠΎΠΌ взаимодСйствия 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-диоксо-3-Ρ„Π΅Π½ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты с Π±Π΅Π½Π·ΠΎΠ³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ΄ΠΎΠΌ. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Ρ†ΠΈΠΊΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ N’-Π±Π΅Π½Π·ΠΎΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-диоксо-3-Ρ„Π΅Π½ΠΈΠ»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ΄Π° кипячСниСм Π² хлорокиси фосфора ΠΈ дальнСйший Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ· Π°Ρ‚ΠΎΠΌΠ° Ρ…Π»ΠΎΡ€Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 2 Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠΉ систСмы. АлкилированиС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΡƒΡ…Π·Π²Π΅Π½Π½ΠΎΠ³ΠΎ ансамбля Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»ΠΎΠ² Π±Π΅Π½Π·ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π°ΠΌΠΈ, Ρ…Π»ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄Π°ΠΌΠΈ ΠΈ 5-(Ρ…Π»ΠΎΡ€ΠΌΠ΅Ρ‚ΠΈΠ»)-3-Π°Ρ€ΠΈΠ»-1,2,4-оксадиазолами ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ 1-Π°Π»ΠΊΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½Ρ‹. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Ρ‹ Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ… 1Н ЯМР, хроматомас спСктров ΠΈ элСмСнтного Π°Π½Π°Π»ΠΈΠ·Π°. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ скрининга ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€ (Β«ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠ»ΠΎΠ΄Ρ†Π΅Π²Β») установлСно отсутствиС ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности Ρƒ 1-Π±Π΅Π½Π·ΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½ΠΎΠ² ΠΈ 2-[5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-диоксо-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)-3,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΡ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-1(2H)-ΠΈΠ»]-N-Π°Ρ€ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности для 1-{[3-Π°Ρ€ΠΈΠ»-1,2,4-оксадиазол-5-ΠΈΠ»]ΠΌΠ΅Ρ‚ΠΈΠ»}-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½ΠΈΠ»-6-(5-Ρ„Π΅Π½ΠΈΠ»-1,3,4-оксадиазол-2-ΠΈΠ»)Ρ‚ΠΈΠ΅Π½ΠΎ[2,3-d]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-2,4(1H,3H)-Π΄ΠΈΠΎΠ½ΠΎΠ². Π”Π°Π½Π½Ρ‹Π΅ вСщСства проявили ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΒ ΠΊ ΡˆΡ‚Π°ΠΌΠΌΠ°ΠΌ Staphylococcus aureus, Escherichia coli ΠΈ Baсillus subtilis со значСниями Π·ΠΎΠ½ Π·Π°Π΄Π΅Ρ€ΠΆΠΊΠΈ роста, Π±Π»ΠΈΠ·ΠΊΠΈΠΌΠΈ ΠΊ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ сравнСния ΠΌΠ΅Ρ‚Ρ€ΠΎΠ½ΠΈΠ΄Π°Π·ΠΎΠ»Ρƒ ΠΈ стрСптомицину.Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ ΠΏΡ–Π΄Ρ…Ρ–Π΄ Π΄ΠΎ синтСзу 5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρƒ ΡˆΠ»ΡΡ…ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΠ²Π°Π½ΠΎΡ— 1,1’-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Π»Π΄Ρ–Ρ–ΠΌΡ–Π΄Π°Π·ΠΎΠ»ΠΎΠΌ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— 5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-діоксо-3-Ρ„Π΅Π½Ρ–Π»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°Π³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти Π· Π±Π΅Π½Π·ΠΎΠ³Ρ–Π΄Ρ€Π°Π·ΠΈΠ΄ΠΎΠΌ. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° Ρ‚Π°ΠΊΠΎΠΆ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ” наступну Ρ†ΠΈΠΊΠ»Ρ–Π·Π°Ρ†Ρ–ΡŽ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ N’-Π±Π΅Π½Π·ΠΎΡ—Π»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-діоксо-3-Ρ„Π΅Π½Ρ–Π»-1,2,3,4-Ρ‚Π΅Ρ‚Ρ€Π°-Π³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-6-ΠΊΠ°Ρ€Π±ΠΎΠ³Ρ–Π΄Ρ€Π°Π·ΠΈΠ΄Ρƒ кип’ятінням Ρƒ хлорокисі фосфору Ρ‚Π° подальший Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Β Π°Ρ‚ΠΎΠΌΠ° Ρ…Π»ΠΎΡ€Ρƒ Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 2 Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½ΠΎΠ²ΠΎΡ— систСми. ΠΠ»ΠΊΡ–Π»ΡŽΠ²Π°Π½Π½Ρ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΠ³ΠΎ Π΄Π²ΠΎΠ»Π°Π½ΠΊΠΎΠ²ΠΎΠ³ΠΎ ансамблю Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Π² Π±Π΅Π½Π·ΠΈΠ»Ρ…Π»ΠΎΡ€ΠΈΠ΄Π°ΠΌΠΈ, Ρ…Π»ΠΎΡ€ΠΎΠ°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Π°ΠΌΠΈ Ρ‚Π° 5-(Ρ…Π»ΠΎΡ€ΠΎΠΌΠ΅Ρ‚ΠΈΠ»)-3-Π°Ρ€ΠΈΠ»-1,2,4-оксадіазо-Π»Π°ΠΌΠΈ Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ 1-Π°Π»ΠΊΡ–Π»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–-Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½ΠΈ. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук Π±ΡƒΠ»ΠΈ ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½Ρ– Π½Π° основі Π΄Π°Π½ΠΈΡ… 1Н ЯМР, хроматомас спСктрів Ρ‚Π° Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ. Π—Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ скринінгу ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€ (Β«ΠΌΠ΅Ρ‚ΠΎΠ΄ колодязів») встановлСно Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності Ρƒ 1-Π±Π΅Π½Π·ΠΈΠ»-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρ–Π² Ρ‚Π° 2-[5-ΠΌΠ΅Ρ‚ΠΈΠ»-2,4-діоксо-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-оксадіазол-2-Ρ–Π»)-3,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΡ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-1(2H)-Ρ–Π»]-N-Π°Ρ€ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності для 1-{[3-Π°Ρ€ΠΈΠ»-1,2,4-оксадіазол-5-Ρ–Π»]ΠΌΠ΅Ρ‚ΠΈΠ»}-5-ΠΌΠ΅Ρ‚ΠΈΠ»-3-Ρ„Π΅Π½Ρ–Π»-6-(5-Ρ„Π΅Π½Ρ–Π»-1,3,4-окса-Π΄Ρ–Π°Π·ΠΎΠ»-2-Ρ–Π»)Ρ‚Ρ–Ρ”Π½ΠΎ[2,3-d]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-2,4(1H,3H)-Π΄Ρ–ΠΎΠ½Ρ–Π². Π”Π°Π½Ρ– Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ виявили Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎ ΡˆΡ‚Π°ΠΌΡ–Π² Staphylococcus aureus, Escherichia coli Ρ‚Π° Baсillus subtilis Ρ–Π· значСннями Π·ΠΎΠ½ Π·Π°Ρ‚Ρ€ΠΈΠΌΠΊΠΈ росту, близькими Π΄ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² порівняння ΠΌΠ΅Ρ‚Ρ€ΠΎΠ½Ρ–Π΄Π°Π·ΠΎΠ»Ρƒ Ρ‚Π° стрСптоміцину

    Pair decay width of the Hoyle state and carbon production in stars

    Full text link
    Electron scattering off the first excited 0+ state in 12C (the Hoyle state) has been performed at low momentum transfers at the S-DALINAC. The new data together with a novel model-independent analysis of the world data set covering a wide momentum transfer range result in a highly improved transition charge density from which a pair decay width Gamma_pi = (62.3 +- 2.0) micro-eV of the Hoyle state was extracted reducing the uncertainty of the literature values by more than a factor of three. A precise knowledge of Gamma_pi is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
    • …
    corecore