262 research outputs found

    Water Resources in Indiana: Past, Present and Future

    Get PDF

    Assessing Potential Winter Weather Response to Climate Change and Implications for Tourism in The U.S. Great Lakes and Midwest

    Get PDF
    Study Region: Eight U.S. states bordering the North American Laurentian Great Lakes. Study Focus: Variable Infiltration Capacity (VIC) model simulations, based on data from an en- semble of atmospheric-ocean general circulation models (AOGCMs) used for the Intergovernmental Panel on Climate Change\u27s (IPCC\u27s) Fifth Assessment Report (AR5), were used to quantify potential climate change impacts on winter weather and hydrology in the study re- gion and understand implications for its tourism sector. New Hydrologic Insights for the Region: By the 2080s, climate change could result in winters that are shorter by over a month, reductions of over a month in days with snow depths required for many kinds of winter recreation, declines in average holiday snow depths of 50 percent or more, and reductions in the percent area of the study region that would be considered viable for winter tourism from about 22 percent to 0.3 percent. Days with temperatures suitable for artificial snowmaking decline to less than a month annually, making it potentially less feasible as an adaptation strategy. All of the region\u27s current ski resorts are operating in areas that will become non-viable for winter tourism businesses under a high emissions scenario. Given the economic importance of the winter tourism industry in the study region, businesses and communities should consider climate change and potential adaptation strategies in their future planning and overall decision-making

    Influence of Bioenergy Crop Production and Climate Change on Ecosystem Services

    Full text link
    Land use change can significantly affect the provision of ecosystem services and the effects could be exacerbated by projected climate change. We quantify ecosystem services of bioenergy‐based land use change and estimate the potential changes of ecosystem services due to climate change projections. We considered 17 bioenergy‐based scenarios with Miscanthus, switchgrass, and corn stover as candidate bioenergy feedstock. Soil and Water Assessment Tool simulations of biomass/grain yield, hydrology, and water quality were used to quantify ecosystem services freshwater provision (FWPI), food (FPI) and fuel provision, erosion regulation (ERI), and flood regulation (FRI). Nine climate projections from Coupled Model Intercomparison Project phase‐3 were used to quantify the potential climate change variability. Overall, ecosystem services of heavily row cropped Wildcat Creek watershed were lower than St. Joseph River watershed which had more forested and perennial pasture lands. The provision of ecosystem services for both study watersheds were improved with bioenergy production scenarios. Miscanthus in marginal lands of Wildcat Creek (9% of total area) increased FWPI by 27% and ERI by 14% and decreased FPI by 12% from the baseline. For St. Joseph watershed, Miscanthus in marginal lands (18% of total area) improved FWPI by 87% and ERI by 23% while decreasing FPI by 46%. The relative impacts of land use change were considerably larger than climate change impacts in this paper. Editor’s note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140015/1/jawr12591_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140015/2/jawr12591.pd

    Agricultural Impacts of Climate Change in Indiana and Potential Adaptations

    Get PDF
    While all sectors of the economy can be impacted by climate variability and change, the agricultural sector is arguably the most tightly coupled to climate where changes in precipitation and temperature directly control plant growth and yield, as well as livestock production. This paper analyzes the direct and cascading effects of temperature, precipitation, and carbon dioxide (CO2) on agronomic and horticultural crops, and livestock production in Indiana through 2100. Due to increased frequency of drought and heat stress, models predict that the yield of contemporary corn and soybean varieties will decline by 8–21% relative to yield potential, without considering CO2 enhancement, which may offset soybean losses. These losses could be partially compensated by adaptation measures such as changes in cropping systems, planting date, crop genetics, soil health, and providing additional water through supplemental irrigation or drainage management. Changes in winter conditions will pose a threat to some perennial crops, including tree and fruit crops, while shifts in the USDA Hardiness Zone will expand the area suitable for some fruits. Heat stress poses a major challenge to livestock production, with decreased feed intake expected with temperatures exceeding 29 °C over 100 days per year by the end of the century. Overall, continued production of commodity crops, horticultural crops, and livestock in Indiana is expected to continue with adaptations in management practice, cultivar or species composition, or crop rotation

    Indiana’s Agriculture in a Changing Climate: A Report from the Indiana Climate Change Impacts Assessment

    Get PDF
    Indiana has long been one of the nation’s leaders in agricultural productivity. Favorable temperatures and precipitation help Indiana farmers generate over $31 billion worth of sales per year, making the state 11th in total agricultural products sold. Changes to the state’s climate over the coming decades, including increasing temperatures, changes in precipitation amounts and patterns, and rising levels of carbon dioxide (CO2) in the air will result in several direct and indirect impacts to the state’s agricultural industry. This report from the Indiana Climate Change Impacts Assessment (IN CCIA) describes how projected changes in the state’s climate will affect the health of livestock and poultry, growing season conditions for crops, the types of crops that can be planted, soil health and water quality as well as weed, pest and disease pressure for agricultural production statewide

    Evaluation of the Algorithms and Parameterizations for Ground Thawing and Freezing Simulation in Permafrost Regions

    Get PDF
    Ground thawing and freezing depths (GTFDs) strongly influence the hydrology and energy balances of permafrost regions. Current methods to simulate GTFD differ in algorithm type, soil parameterization, representation of latent heat, and unfrozen water content. In this study, five algorithms (one semiempirical, two analytical, and two numerical), three soil thermal conductivity parameterizations, and three unfrozen water parameterizations were evaluated against detailed field measurements at four field sites in Canada’s discontinuous permafrost region. Key findings include: (1) de Vries’ parameterization is recommended to determine the thermal conductivity in permafrost soils; (2) the three unfrozen water parameterization methods exhibited little difference in terms of GTFD simulations, yet the segmented linear function is the simplest to be implemented; (3) the semiempirical algorithm reasonably simulates thawing at permafrost sites and freezing at seasonal frost sites with site-specific calibration. However, large interannual and intersite variations in calibration coefficients limit its applicability for dynamic analysis; (4) when driven by surface forcing, analytical algorithms performed marginally better than the semiempirical algorithm. The inclusion of bottom forcing improved analytical algorithm performance, yet their results were still poor compared with those achieved by numerical algorithms; (5) when supplied with the optimal inputs, soil parameterizations, and model configurations, the numerical algorithm with latent heat treated as an apparent heat capacity achieved the best GTFD simulations among all algorithms at all sites. Replacing the observed bottom temperature with a zero heat flux boundary condition did not significantly reduce simulation accuracy, while assuming a saturated profile caused large errors at several sites

    Water sufficiency for cacao production in the Sierra Nevada de Santa Marta (SNSM) region, Colombia

    Get PDF
    Study region: Sierra Nevada de Santa Marta (SNSM) region of Colombia. Study focus: This research was conducted as a case study to generate relevant, quantitative information to support cacao farmer decision-making processes concerning water management in the SNSM. It involved the development and evaluation of a spatial dataset of precipitation and temperature, integration of digital soil mapping with a modification of the Thornthwaite and Mather water balance model, and finally an assessment of water sufficiency for cacao production. We elaborated site-specific and spatially-distributed analyses to generate information that will be shared with technicians who assist cacao growers in the SNSM. New hydrological insights for the region: Under the climate conditions for the analysis period (1989–2018), rainfall was not enough to prevent cacao yield losses for 10 out of the 27 farms evaluated. The location of farms in two departments with contrasting climate conditions showed the importance of spatial analysis of water availability when providing recommendations of management practices to cacao growers. The results revealed that farms facing less frequent water stress are characterized by higher rainfalls and lower temperatures, soils that contain more organic matter, and are located at higher elevations with steeper slopes. Temporally, water stress is highest in the months February-August, with special interest in March-April as the dry season ends and July-August just before the peak rainy season
    corecore