64 research outputs found

    Galactic transient sources with the Cherenkov Telescope Array

    Full text link
    A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low-mass and high-mass X-ray binaries containing compact objects (e.g., novae, microquasars, transitional millisecond pulsars, supergiant fast X-ray transients), isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array (CTA) and the prospects for studying them with Target of Opportunity observations. We show that CTA will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. We also discuss the multi-wavelength synergies with other instruments and large astronomical facilities.Comment: 31 pages, 22 figures, submitted to MNRA

    Studies of the nature of the low-energy, gamma-like background for Cherenkov Telescope Array

    Full text link
    The upcoming Cherenkov Telescope Array (CTA) project is expected to provide unprecedented sensitivity in the low-energy ( <~100 GeV) range for Cherenkov telescopes. In order to exploit fully the potential of the telescopes the standard analysis methods for gamma/hadron separation might need to be revised. We study the composition of the background by identifying events composed mostly of a single electromagnetic subcascade or double subcascade from a {\pi}0 (or another neutral meson) decay. We apply the standard simulation and analysis chain of CTA to evaluate the potential of the standard analysis to reject such events.Comment: All CTA contributions at arXiv:1709.03483. Proc. of the 35th International Cosmic Ray Conference, Busan, Kore

    A Trigger Interface Board to manage trigger and timing signals in CTA Large-Sized Telescope and Medium-Sized Telescope cameras

    Full text link
    One of the main goals of the Cherenkov Telescope Array (CTA) observatory is to improve the γ\gamma-ray detection sensitivity by an order of magnitude, compared to the current ground-based observatories. Widening the energy coverage down to 20 GeV and up to 300 TeV is also an important goal. This goal will be possible by using Large-Sized Telescopes (LSTs) for the energy range of 20--200 GeV, Medium-Sized Telescopes (MSTs) for 100 GeV--10 TeV, and Small-Sized Telescopes (SSTs) for energies above 5 TeV. The LSTs, which focus on the lowest energies, are operated in a region dominated by background events originated from the night sky background. To reduce such background events as much as possible, the LST cameras are only read out if at least two of them have been triggered in a short-time coincidence window. Such trigger is implemented for each LST camera in a dedicated module called Trigger Interface Board (TIB). In addition, the TIB is also used in MSTs equipped with the NectarCAM camera system to manage the different trigger and timing signals between LSTs and MSTs, as well as to monitor the different counting rates and dead-time of the cameras. It also assigns a time stamp to each event, which is recorded along with the information provided by the CTA global timing distribution system, based on the White Rabbit protocol. Therefore, the event arrival time can be determined in a redundant way. In this contribution, the main features and the technical performance of the TIB are presented.Comment: All CTA contributions at arXiv:1709.03483. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Kore

    Prototype 9.7 m Schwarzschild-Couder telescope for the Cherenkov Telescope Array: status of the optical system

    Full text link
    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma ray observatory, aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 30 GeV to more than 300 TeV. The 9.7m Schwarzschild-Couder (SC) candidate medium-size telescope for CTA exploits a novel aplanatic two-mirror optical design that provides a large field of view of 8 degrees and substantially improves the off-axis performance giving better angular resolution across all of the field of view with respect to single-mirror telescopes. The realization of the SC optical design implies the challenging production of large aspherical mirrors accompanied by a submillimeter-precision custom alignment system. In this contribution we report on the status of the implementation of the optical system on a prototype 9.7 m SC telescope located at the Fred Lawrence Whipple Observatory in southern Arizona.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan, Korea. All CTA contributions at arXiv:1709.0348

    ASTRI SST-2M prototype and mini-array simulation chain, data reduction software, and archive in the framework of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a worldwide project aimed at building the next-generation ground-based gamma-ray observatory. Within the CTA project, the Italian National Institute for Astrophysics (INAF) is developing an end-to-end prototype of the CTA Small-Size Telescopes with a dual-mirror (SST-2M) Schwarzschild-Couder configuration. The prototype, named ASTRI SST-2M, is located at the INAF "M.C. Fracastoro" observing station in Serra La Nave (Mt. Etna, Sicily) and is currently in the scientific and performance validation phase. A mini-array of (at least) nine ASTRI telescopes has been then proposed to be deployed at the Southern CTA site, by means of a collaborative effort carried out by institutes from Italy, Brazil, and South-Africa. The CTA/ASTRI team is developing an end-to-end software package for the reduction of the raw data acquired with both ASTRI SST-2M prototype and mini-array, with the aim of actively contributing to the global ongoing activities for the official data handling system of the CTA observatory. The group is also undertaking a massive Monte Carlo simulation data production using the detector Monte Carlo software adopted by the CTA consortium. Simulated data are being used to validate the simulation chain and evaluate the ASTRI SST-2M prototype and mini-array performance. Both activities are also carried out in the framework of the European H2020-ASTERICS (Astronomy ESFRI and Research Infrastructure Cluster) project. A data archiving system, for both ASTRI SST-2M prototype and mini-array, has been also developed by the CTA/ASTRI team, as a testbed for the scientific archive of CTA. In this contribution, we present the main components of the ASTRI data handling systems and report the status of their development.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. All CTA contributions at arXiv:1709.0348

    Prospects for a Dark Matter annihilation signal towards the Sagittarius dwarf galaxy with ground based Cherenkov telescopes

    Full text link
    Dwarf galaxies are widely believed to be among the best targets for indirect dark matter searches using high-energy gamma rays; and indeed gamma-ray emission from these objects has long been a subject of detailed study for ground-based atmospheric Cherenkov telescopes. Here, we update current exclusion limits obtained on the closest dwarf, the Sagittarius dwarf galaxy, in light of recent realistic dark matter halo models. The constraints on the velocity-weighted annihilation cross section of the dark matter particle are of a few 1023^{-23} cm3^{3}s1^{-1} in the TeV energy range for a 50 h exposure. The limits are extrapolated to the sensitivities of future Cherenkov Telescope Arrays. For 200 h of observation time, the sensitivity at 95% C.L. reaches 1025^{-25} cm3^{3}s1^{-1}. Possible astrophysical backgrounds from gamma-ray sources dissembled in Sagittarius dwarf are studied. It is shown that with long-enough observation times, gamma-ray background from millisecond pulsars in a globular cluster contained within Sagittarius dwarf may limit the sensitivity to dark matter annihilations.Comment: 12 pages, 5 figures, 2 tables, accepted for publication in Ap

    Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array

    Full text link
    The foreseen implementations of the Small Size Telescopes (SST) in CTA will provide unique insights into the highest energy gamma rays offering fundamental means to discover and under- stand the sources populating the Galaxy and our local neighborhood. Aiming at such a goal, the SST-1M is one of the three different implementations that are being prototyped and tested for CTA. SST-1M is a Davies-Cotton single mirror telescope equipped with a unique camera technology based on SiPMs with demonstrated advantages over classical photomultipliers in terms of duty-cycle. In this contribution, we describe the telescope components, the camera, and the trigger and readout system. The results of the commissioning of the camera using a dedicated test setup are then presented. The performances of the camera first prototype in terms of expected trigger rates and trigger efficiencies for different night-sky background conditions are presented, and the camera response is compared to end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348

    Control Software for the SST-1M Small-Size Telescope prototype for the Cherenkov Telescope Array

    Full text link
    The SST-1M is a 4-m Davies--Cotton atmospheric Cherenkov telescope optimized to provide gamma-ray sensitivity above a few TeV. The SST-1M is proposed as part of the Small-Size Telescope array for the Cherenkov Telescope Array (CTA), the first prototype has already been deployed. The SST-1M control software of all subsystems (active mirror control, drive system, safety system, photo-detection plane, DigiCam, CCD cameras) and the whole telescope itself (master controller) uses the standard software design proposed for all CTA telescopes based on the ALMA Common Software (ACS) developed to control the Atacama Large Millimeter Array (ALMA). Each subsystem is represented by a separate ACS component, which handles the communication to and the operation of the subsystem. Interfacing with the actual hardware is performed via the OPC UA communication protocol, supported either natively by dedicated industrial standard servers (PLCs) or separate service applications developed to wrap lower level protocols (e.g. CAN bus, camera slow control) into OPC UA. Early operations of the telescope without the camera were already carried out. The camera is fully assembled and is capable to perform data acquisition using artificial light source.Comment: In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea. All CTA contributions at arXiv:1709.0348

    The On-Site Analysis of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in particular for the RTA) and the sensitivity requirements are challenging because of the large data rate, a few GByte/s. The remote connection to the CTA candidate site with a rather limited network bandwidth makes the issue of the exported data size extremely critical and prevents any kind of processing in real-time of the data outside the site of the telescopes. For these reasons the analysis will be performed on-site with infrastructures co-located with the telescopes, with limited electrical power availability and with a reduced possibility of human intervention. This means, for example, that the on-site hardware infrastructure should have low-power consumption. A substantial effort towards the optimization of high-throughput computing service is envisioned to provide hardware and software solutions with high-throughput, low-power consumption at a low-cost.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

    Full text link
    The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy γ\gamma-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs which can be identified as PeVatrons with CTA is estimated within a model for the evolution of SNRs. Additionally, the potential of a follow-up observation strategy under moonlight conditions for PeVatron searches is investigated. Statistical methods for the identification of PeVatrons are introduced, and realistic Monte--Carlo simulations of the response of the CTA observatory to the emission spectra from hadronic PeVatrons are performed. Based on simulations of a simplified model for the evolution for SNRs, the detection of a γ\gamma-ray signal from in average 9 Galactic PeVatron SNRs is expected to result from the scan of the Galactic plane with CTA after 10 hours of exposure. CTA is also shown to have excellent potential to confirm these sources as PeVatrons in deep observations with O(100)\mathcal{O}(100) hours of exposure per source.Comment: 34 pages, 16 figures, Accepted for publication in Astroparticle Physic
    corecore