113 research outputs found

    From Social Network (Centralized vs. Decentralized) to Collective Decision-Making (Unshared vs. Shared Consensus)

    Get PDF
    Relationships we have with our friends, family, or colleagues influence our personal decisions, as well as decisions we make together with others. As in human beings, despotism and egalitarian societies seem to also exist in animals. While studies have shown that social networks constrain many phenomena from amoebae to primates, we still do not know how consensus emerges from the properties of social networks in many biological systems. We created artificial social networks that represent the continuum from centralized to decentralized organization and used an agent-based model to make predictions about the patterns of consensus and collective movements we observed according to the social network. These theoretical results showed that different social networks and especially contrasted ones – star network vs. equal network - led to totally different patterns. Our model showed that, by moving from a centralized network to a decentralized one, the central individual seemed to lose its leadership in the collective movement's decisions. We, therefore, showed a link between the type of social network and the resulting consensus. By comparing our theoretical data with data on five groups of primates, we confirmed that this relationship between social network and consensus also appears to exist in animal societies

    Resilience of experimentally-seeded dietary traditions in wild vervets : evidence from group fissions

    Get PDF
    This work was supported by the Swiss National Science Foundation (Sinergia grant CRSI33_133040 to A.W. and C. S., P300P3_151187 and 31003A_159587 to E.W.); the Society in Science - Branco Weiss Fellowship to E.W.; and the John Templeton Foundation (ID 40128 to A.W.).Controlled laboratory experiments have delivered extensive and compelling evidence for the diffusion and maintenance of socially learned behavior in primates and other animals. Such evidence is rarer in the wild, but we show that a behavior seeded in a majority of individuals within vervet monkey (Chlorocebus pygerythus) groups may be sustained across several years. Here we report results of two natural fission events in such groups that offer novel evidence of the resilience of socially-transmitted group norms of behavior. Before fission, high ranked females exhibited an almost exclusive adherence to a group preference among two food options, originally introduced through a distasteful additive in one option, but no longer present in repeated later tests. Because of rank-dependent competition, low-ranked females ate more of the formerly distasteful food and so discovered it was now as palatable as the alternative. Despite this experience, low ranked females who formed the splinter groups then expressed a 100% bias for the preferred option of their original parent group, revealing these preferences to be resilient. We interpret this effect as conformity to either the preferences of high rankers or of a majority in the parent group, or both. However, given fissioned individuals’ familiarity with their habitat and experimental options, we question the adequacy of the informational function usually ascribed to conformity and discuss alternatives under a concept of "social conformity".PostprintPeer reviewe

    Long-term Site Fidelity and Individual Home Range Shifts in Lophocebus albigena

    Get PDF
    We investigated long-term site fidelity of gray-cheeked mangabey (Lophocebus albigena) groups in Kibale National Park, Uganda. Concurrently, we monitored shifts in home range by individual females and subadult and adult males. We documented home range stability by calculating the area of overlap in successive years, and by recording the drift of each group’s monthly centroid from its initial location. Home ranges remained stable for 3 of our 4 groups (overlap over 10 yr >60%). Core areas were more labile, but group centroids drifted an average of only 530 m over the entire decade. Deviations from site fidelity were associated with dispersal or group fission. During natal dispersal, subadult males expanded their home ranges over many months, settling ≤4 home ranges away. Adult males, in contrast, typically dispersed within a few days to an adjacent group in an area of home range overlap. Adult males made solitary forays, but nearly always into areas used by their current group or by a group to which they had previously belonged. After secondary dispersal, they expanded their ranging in the company of their new group, apparently without prior solitary exploration of the new area. Some females also participated in home range shifts. Females shifted home ranges only within social groups, in association with temporary or permanent group splits. Our observations raise the possibility that male mangabeys use a finder-joiner mechanism when moving into new home ranges during secondary dispersal. Similarly, females might learn new resource locations from male immigrants before or during group fission
    corecore