13 research outputs found

    Renal Sodium Gradient Orchestrates a Dynamic Antibacterial Defense Zone.

    Get PDF
    Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense

    Double-Rice System Simulation in a Topographically Diverse Region—A Remote-Sensing-Driven Case Study in Hunan Province of China

    No full text
    Few studies have focused on the potential impacts of topography on regional crop simulation, which might constrain the development of crop models and lead to inaccurate estimations for food security. In this study, we used remote sensing data to calibrate a regional crop model (MCWLA-Rice) for yield simulation in a double-rice crop rotation system in counties of Hunan province dominated by three landforms (plain, hill, and mountain). The calibration scheme with coarse remote sensing data (Global LAnd Surface Satellite, GLASS) greatly improved model accuracy for the double-rice system and is a promising method for yield estimation in large areas. The average improvement in relative root mean square error (RRMSE) was at most 48.00% for early rice and 41.25% for late rice. The average improvement in coefficient of determination (R2) value was at most 0.54 for early rice and 0.19 for late rice. Estimation of yield in counties dominated by different landform types indicated that: (1) MCWLA-Rice tended to be unstable in areas of complex topography and resulted in unbalanced proportions of overestimations and underestimations. (2) Differences in yield simulation between early rice and late rice varied among counties; yield estimates were highest in predominantly hilly counties, followed by counties dominated by plains, and lowest in predominantly mountainous counties. The results indicated that the topography might harm the accuracy of crop model simulations. Integration of topographic factors into crop models may enable yield estimation with enhanced accuracy to promote social development

    Bromodomain Inhibitors Modulate FcγR-Mediated Mononuclear Phagocyte Activation and Chemotaxis.

    No full text
    IgG antibodies form immune complexes (IC) that propagate inflammation and tissue damage in autoimmune diseases such as systemic lupus erythematosus. IgG IC engage Fcγ receptors (FcγR) on mononuclear phagocytes (MNP), leading to widespread changes in gene expression that mediate antibody effector function. Bromodomain and extra-terminal domain (BET) proteins are involved in governing gene transcription. We investigated the capacity of BET protein inhibitors (iBET) to alter IgG FcγR-mediated MNP activation. We found that iBET dampened IgG IC-induced pro-inflammatory gene expression and decreased activating FcγR expression on MNPs, reducing their ability to respond to IgG IC. Despite FcγR downregulation, iBET-treated macrophages demonstrated increased phagocytosis of protein antigen, IgG IC, and apoptotic cells. iBET also altered cell morphology, generating more amoeboid MNPs with reduced adhesion. iBET treatment impaired chemotaxis towards a CCL19 gradient in IC-stimulated dendritic cells (DC) in vitro, and inhibited IC-induced DC migration to draining lymph nodes in vivo, in a DC-intrinsic manner. Altogether, our data show that iBET modulates FcγR-mediated MNP activation and migration, revealing the therapeutic potential of BET protein inhibition in antibody-mediated diseases
    corecore