77,679 research outputs found

    Matter-wave localization in a random potential

    Full text link
    By numerical and variational solution of the Gross-Pitaevskii equation, we studied the localization of a noninteracting and weakly-interacting Bose-Einstein condensate (BEC) in a disordered cold atom lattice and a speckle potential. In the case of a single BEC fragment, the variational analysis produced good results. For a weakly disordered potential, the localized BECs are found to have an exponential tail as in weak Anderson localization. We also investigated the expansion of a noninteracting BEC in these potential. We find that the BEC will be locked in an appropriate localized state after an initial expansion and will execute breathing oscillation around a mean shape when a BEC at equilibrium in a harmonic trap is suddenly released into a disorder potential

    Finite Temperature Casimir Effect and Dispersion in the Presence of Compactified Extra Dimensions

    Full text link
    Finite temperature Casimir theory of the Dirichlet scalar field is developed, assuming that there is a conventional Casimir setup in physical space with two infinitely large plates separated by a gap R and in addition an arbitrary number q of extra compacified dimensions. As a generalization of earlier theory, we assume in the first part of the paper that there is a scalar 'refractive index' N filling the whole of the physical space region. After presenting general expressions for free energy and Casimir forces we focus on the low temperature case, as this is of main physical interest both for force measurements and also for issues related to entropy and the Nernst theorem. Thereafter, in the second part we analyze dispersive properties, assuming for simplicity q=1, by taking into account dispersion associated with the first Matsubara frequency only. The medium-induced contribution to the free energy, and pressure, is calculated at low temperatures.Comment: 25 pages, one figure. Minor changes in the discussion. Version to appear in Physica Script

    Accretion Disk Temperatures and Continuum Colors in QSOs

    Get PDF
    Accretion disks around supermassive black holes are widely believed to be the dominant source of the optical-ultraviolet continuum in many classes of active galactic nuclei (AGN). We study here the relationship between the continuum colors of AGN and the characteristic accretion disk temperature (T_max). Based on NLTE models of accrection disks in AGN computed as described by Hubeny et al. (2000), we find that continuum intensity ratios for several pairs of wavelengths between 1350 and 5100 A should show a trend of bluer colors for higher T_max, notwithstanding random disk inclinations. We compare this theoretical expectation with observed colors of QSOs in the Sloan Digital Sky Survey,deriving black hole mass and thence T_max from the width of the Mg II broad emission line. The observed colors generally do not show the expected trend and in some cases show a reverse trend of redder colors with increasing T_max. The cause of this discrepancy does not appear to be dust reddening or galaxy contamination but may relate to the accretion rate, as the offset objects are accreting above ~30 % of the Eddington limit. The derived disk temperature depends primarily on line width, with little or no dependence on luminosity.Comment: 7 pages, 7 figures, accepted for publication in ApJ, uses emulateapj.cl

    Multiple Reggeon Exchange from Summing QCD Feynman Diagrams

    Full text link
    Multiple reggeon exchange supplies subleading logs that may be used to restore unitarity to the Low-Nussinov Pomeron, provided it can be proven that the sum of Feynman diagrams to all orders gives rise to such multiple regge exchanges. This question cannot be easily tackled in the usual way except for very low-order diagrams, on account of delicate cancellations present in the sum which necessitate individual Feynman diagrams to be computed to subleading orders. Moreover, it is not clear that sums of high-order Feynman diagrams with complicated criss-crossing of lines can lead to factorization implied by the multi-regge scenario. Both of these difficulties can be overcome by using the recently developed nonabelian cut diagrams. We are then able to show that the sum of ss-channel-ladder diagrams to all orders does lead to such multiple reggeon exchanges.Comment: uu-encoded latex file with 11 postscript figures (20 pages

    Irreducible Characters of General Linear Superalgebra and Super Duality

    Full text link
    We develop a new method to solve the irreducible character problem for a wide class of modules over the general linear superalgebra, including all the finite-dimensional modules, by directly relating the problem to the classical Kazhdan-Lusztig theory. We further verify a parabolic version of a conjecture of Brundan on the irreducible characters in the BGG category \mc{O} of the general linear superalgebra. We also prove the super duality conjecture

    Finite Temperature Casimir Effect in Randall-Sundrum Models

    Full text link
    The finite temperature Casimir effect for a scalar field in the bulk region of the two Randall-Sundrum models, RSI and RSII, is studied. We calculate the Casimir energy and the Casimir force for two parallel plates with separation aa on the visible brane in the RSI model. High-temperature and low-temperature cases are covered. Attractiveness versus repulsiveness of the temperature correction to the force is discussed in the typical special cases of Dirichlet-Dirichlet, Neumann-Neumann, and Dirichlet-Neumann boundary conditions at low temperature. The Abel-Plana summation formula is made use of, as this turns out to be most convenient. Some comments are made on the related contemporary literature.Comment: 33 pages latex, 2 figures. Some changes in the discussion. To appear in New J. Phy

    Radiative acceleration and transient, radiation-induced electric fields

    Full text link
    The radiative acceleration of particles and the electrostatic potential fields that arise in low density plasmas hit by radiation produced by a transient, compact source are investigated. We calculate the dynamical evolution and asymptotic energy of the charged particles accelerated by the photons and the radiation-induced electric double layer in the full relativistic, Klein-Nishina regime. For fluxes in excess of 102710^{27} ergcm2s1{\rm erg} {\rm cm}^{-2} {\rm s}^{-1}, the radiative force on a diluted plasma (n\la 10^{11} cm3^{-3}) is so strong that electrons are accelerated rapidly to relativistic speeds while ions lag behind owing to their larger inertia. The ions are later effectively accelerated by the strong radiation-induced double layer electric field up to Lorentz factors 100\approx 100, attainable in the case of negligible Compton drag. The asymptotic energies achieved by both ions and electrons are larger by a factor 2--4 with respect to what one could naively expect assuming that the electron-ion assembly is a rigidly coupled system. The regime we investigate may be relevant within the framework of giant flares from soft gamma-repeaters.Comment: 14 pages, 7 figures, ApJ, in press (tentatively scheduled for the v. 592, 2003 issue

    Directional gene flow and ecological separation in Yersinia enterocolitica

    Get PDF
    Yersinia enterocolitica is a common cause of food-borne gastroenteritis worldwide. Recent work defining the phylogeny of the genus Yersinia subdivided Y. enterocolitica into six distinct phylogroups. Here, we provide detailed analyses of the evolutionary processes leading to the emergence of these phylogroups. The dominant phylogroups isolated from human infections, PG3–5, show very little diversity at the sequence level, but do present marked patterns of gain and loss of functions, including those involved in pathogenicity and metabolism, including the acquisition of phylogroup-specific O-antigen loci. We tracked gene flow across the species in the core and accessory genome, and show that the non-pathogenic PG1 strains act as a reservoir for diversity, frequently acting as donors in recombination events. Analysis of the core and accessory genome also suggested that the different Y. enterocolitica phylogroups may be ecologically separated, in contrast to the long-held belief of common shared ecological niches across the Y. enterocolitica species
    corecore