13 research outputs found

    Mapping from Frame-Driven to Frame-Free Event-Driven Vision Systems by Low-Rate Rate-Coding and Coincidence Processing. Application to Feed-Forward ConvNets

    Get PDF
    Event-driven visual sensors have attracted interest from a number of different research communities. They provide visual information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given “frame rate”. Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something meaningful is happening, without any notion of a frame. A special type of Event-driven sensor is the so called Dynamic-Vision-Sensor (DVS) where each pixel computes relative changes of light, or “temporal contrast”. The sensor output consists of a continuous flow of pixel events which represent the moving objects in the scene. Pixel events become available with micro second delays with respect to “reality”. These events can be processed “as they flow” by a cascade of event (convolution) processors. As a result, input and output event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful events. In this paper we present a methodology for mapping from a properly trained neural network in a conventional Frame-driven representation, to an Event-driven representation. The method is illustrated by studying Event-driven Convolutional Neural Networks (ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The Event-driven ConvNet is fed with recordings obtained from a real DVS camera. The Event-driven ConvNet is simulated with a dedicated Event-driven simulator, and consists of a number of Event-driven processing modules the characteristics of which are obtained from individually manufactured hardware modules

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors

    No full text
    Active targeting nanoparticles were developed to simultaneously codeliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Curcumin (Cur). In the nanoparticles (TRAIL-Cur-NPs), TRAIL was used as both active targeting ligand and therapeutic agent, and Cur could upregulate death receptors (DR4 and DR5) to increase the apoptosis-inducing effects of TRAIL. Compared with corresponding free drugs, TRAIL-Cur-NPs group showed enhanced cellular uptake, cytotoxicity and apoptosis induction effect on HCT116 colon cancer cells. In addition, in vivo anticancer studies suggested that TRAIL-Cur-NPs had superior therapeutic effect on tumors without obvious toxicity, which was mainly due to the high tumor targeting and synergistic effect of TRAIL and Cur. The synergistic mechanism of improved antitumor efficacy was proved to be upregulation of DR4 and DR5 in tumor cells induced by Cur. Thus, the prepared codelivery nanoparticles may have potential applications in colorectal cancer therapy

    A preoperative magnetic resonance imaging-based model to predict biochemical failure after radical prostatectomy

    No full text
    Abstract To investigate if a magnetic resonance imaging (MRI)-based model reduced postoperative biochemical failure (BF) incidence in patients with prostate cancer (PCa). From June 2018 to January 2020, we retrospectively analyzed 967 patients who underwent prostate bi-parametric MRI and radical prostatectomy (RP). After inclusion criteria were applied, 446 patients were randomized into research (n = 335) and validation cohorts (n = 111) at a 3:1 ratio. In addition to clinical variables, MRI models also included MRI parameters. The area under the curve (AUC) of receiver operating characteristic and decision curves were analyzed. The risk of postoperative BF, defined as persistently high or re-elevated prostate serum antigen (PSA) levels in patients with PCa with no clinical recurrence. In the research (age 69 [63–74] years) and validation cohorts (age 69 [64–74] years), the postoperative BF incidence was 22.39% and 27.02%, respectively. In the research cohort, the AUC of baseline and MRI models was 0.780 and 0.857, respectively, with a significant difference (P < 0.05). Validation cohort results were consistent (0.753 vs. 0.865, P < 0.05). At a 20% risk threshold, the false positive rate in the MRI model was lower when compared with the baseline model (31% [95% confidence interval (CI): 9–39%] vs. 44% [95% CI: 15–64%]), with the true positive rate only decreasing by a little (83% [95% CI: 63–94%] vs. 87% [95% CI: 75–100%]). 32 of 100 RPs can been performed, with no raise in quantity of patients with missed BF. We developed and verified a MRI-based model to predict BF incidence in patients after RP using preoperative clinical and MRI-related variables. This model could be used in clinical settings

    Tetrahydrofolate Modulates Floral Transition through Epigenetic Silencing.

    Full text link
    Folates, termed from tetrahydrofolate (THF) and its derivatives, function as coenzymes in one-carbon transfer reactions and play a central role in synthesis of nucleotides and amino acids. Dysfunction of cellular folate metabolism leads to serious defects in plant development; however, the molecular mechanisms of folate-mediated cellular modifications and physiological responses in plants are still largely unclear. Here, we reported that THF controls flowering time by adjusting DNA methylation-regulated gene expression in Arabidopsis (Arabidopsis thaliana). Wild-type seedlings supplied with THF as well as the high endogenous THF content mutant dihydrofolate synthetase folypoly-Glu synthetase homolog B exhibited significant up-regulation of the flowering repressor of Flowering Wageningen and thereby delaying floral transition in a dose-dependent manner. Genome-wide transcripts and DNA methylation profiling revealed that THF reduces DNA methylation so as to manipulate gene expression activity. Moreover, in accompaniment with elevated cellular ratios between monoglutamylated and polyglutamylated folates under increased THF levels, the content of S-adenosylhomo-Cys, a competitive inhibitor of methyltransferases, was obviously higher, indicating that enhanced THF accumulation may disturb cellular homeostasis of the concerted reactions between folate polyglutamylation and folate-dependent DNA methylation. In addition, we found that the loss-of-function mutant of CG DNA methyltransferase MET1 displayed much less responsiveness to THF-associated flowering time alteration. Taken together, our studies revealed a novel regulatory role of THF on epigenetic silencing, which will shed lights on the understanding of interrelations in folate homeostasis, epigenetic variation, and flowering control in plants
    corecore