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Mapping from Frame-Driven to Frame-Free Event-Driven
Vision Systems by Low-Rate Rate-Coding and Coincidence
Processing. Application to Feed-Forward ConvNets

J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen and B. Linares-Barranco

Abstract - Event-driven visual sensors have attracted interest the observed moving reality as it changes, without waiting to

from a number of different research communities. They provide 55semple or scan artificial ime-constrained frames (images).
visual information in quite a different way from conventional

video systems consisting of sequences of still images rendered ata As an illustration, Fig. 1 shows the event flow generated

given “frame rate”. Event-driven vision sensors take inspiration hy 3 DVS when it observes a black #otating disk with a
from biology. Each pixel sends out an event (spike) when it sense

S . .
something meaningful is happening, without any notion of a frame. White dot. On the right, events are represented in 3D
A special type of Event-driven sensor is the so calledcoordinates Xyt). When a pixel senses a dark-to-bright

Dynamic-Vision-Sensor (DVS) where each pixel computes relativetransition it sends out positive events (dark dots in Fig. 1), and
changes of light, or “temporal contrast”. The sensor output

consists of a continuous flow of pixel events which represent the?WNen it senses a bright-to-dark transition it sends out a
moving objects in the scene. Pixel events become available witimegative event (gray dots in Fig. 1). Appendix 1 explains the
micro second delays with respect to "reality”. These events can begperation of a typical DVS camera in more detail. The flow of
processed “as they flow” by a cascade of event (convolution) .

processors. As a result, input and output event flows are €VENtS generated by a DVS can be captured with an event
practically coincident in time, and objects can be recognized aslogger board [6]-[7], and written on a file with corresponding

soon as the sensor provides enough meaningful events. In thigime-stamps. This file contains a list of signed time-stamped
paper we present a methodology for mapping from a properly

trained neural network in a conventional Frame-driven EVENS{XY.S).

representation, to an Event-driven representation. The method is Recorded time-stamped events can be processed off-line to
illustrated by studying Event-driven Convolutional Neural St ap ; : :
Networks (ConvNet) trained to recognize rotating human Perform filtering, noise removal, shape detection, object
silhouettes or high speed poker card symbols. The Event-drivenrecognition, and other operations. However, it is more

ConvNet is fed with recordings obtained from a real DVS camera. desirable to develop event-driven processing hardware to
The Event-driven ConvNet is simulated with a dedicated .
Event-driven simulator, and consists of a number of Event-driven process events as they are generated by the DVS, without

processing modules the characteristics of which are obtained from time-stamping them, and to operate in true real time. For
individually manufactured hardware modules. example, some event-driven convolution processors have been
Indexing Terms. Feature Extraction, Convolutional Neural recently repprted for performing large programmable I_<ernel
Networks, Object Recognition, Spiking Neural Networks, Event 2D convolutions on event flows [8]-[10]. Appendix 2 briefly
Driven Neural Networks, Bio-inspired Vision, High Seed Vision.  explains the operation of a typical AER (Address Event
Representation) programmable kernel convolution chip. One
I. INTRODUCTION very interesting property of this event-driven processing is

In 2006 Delbriick presented the first Event-Driveffhat we call here pseudo-smultaneity” or “coincidence”
Dynamic Vision Sensor (DVS) [1]-[2], inspired by Kramer@etween input and output event .fI_ows. Th|s. concept is
transient detector concept [3]. This was followed and improv#iiistrated with the help of Fig. 2. A vision sensor is observing
by other researchers [4]-[5]. The DVS presents a revolution&rj}@shing symbol that lasts fpr 1ms. The sensor then sequ its
concept in vision sensing, as it uses an Event-driv@HtPut to a 5-layer Convolutional Neural Network for object
Frame-less approach to capture transients in visual scenes."ecognition, as shown in Fig. 2(a). In the case of conventional

A DVS contains an array of pixelgj{ where each pixel Frame-prlven sensing and processing, Fhe sequence. of
senses local light; and generates an asynchronous “addrd¥9CcessiNg results would pe as depicted in F|g. 2(b). Assuming
event” every time light changes by a given relative amount égnsor.and each processing stage rgspond n 1ms.,_the sensor
1 (if light increases: wherl;(t)/1,(t;) = C , or if Iightoutput image would be available during the next mili second
decreases: wheh;(t)/1;(t,) = 1/C). The “address event”
consists of the pixel coordinates;{;;) and signs; of the

change (increment or decrement). This “flow” of asynchronou ~ Retating Det 1

events is usually referred to as “Address Event Representatio "

(AER). Every time a DVS pixel generates such event, the eve \ g

parametersx.y;;,s;) are written on a high speed asynchronou: £

digital bus with nano-second delays. A DVS pixel typically bt

generates one to four events (spikes) when an edge crosse: %1

DVS output consists of a continuous flow of events (spikes) i b o
time, each with sub-microsecond time resolution, representir 100 - 00

Authors are with the Instituto de Microelectronica de Sevilla Fig. 1: Example illustration of DVS camera output event flow when
(IMSE-CNM-CSIC) Spain, the Dpto. Teoria de la Sefal, ETSIT, University of observing a black rotating disk with a white dot, rotating at 4084z
Sevilla, Spain, and with Nanyang Technological University, Singapore.
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Reality | *g *1 *2 *3 X4 X5 processing modules used to perform object recagnttisks.
*%%%%%® To do so, we will concentrate on a particular typke
bio-inspired vision processing structures callech@dutional
3 Neural Networks (ConvNets) [12]. Reported ConvNgisrate
‘ ‘ ‘ ‘ ‘ ‘ ‘ based on Frame-Driven principles, and are traingd b
Realit%‘ * | | | | | 3 3 presenting them with a database of training statiages
§ ‘ ‘ ‘ ‘ ‘ . (frames). On the other hand, training of eventemiv
processing modules is still an open research pmobf&ome

Sensol

(

XOT * § § § § § .. preliminary and highly promising work on this ca@found in
- xJ ‘ . } } } } . literature [19]-[20]. However, its application targe scale
2 T 1 1 1 1 1 1 systems is presently not practical. Thereforehia paper we
T 2 } } . } } } - present an intermediate solution. First, we buildatabase of
£ ng | | | l § § § training images (frames) by collecting events framDVS
L « T 1 . § § camera during fixed time intervals. Second, we ntrai
b) 4 I ; Frame-driven ConvNet with this database to perfatject
( XsT l § recognition. Third, we map the learned parametdrghe
time  Frame-Driven ConvNet to an Event-Driven ConvNetd an
i | 1 finally we fine-tune some extra available timindated
*o . ‘ parameters of the Event-Driven ConvNet to optimize
XlT odt : : : : : : recognition. To do this process, we provide a mattagy for
ks « T tee | | | | | | mapping the properly trained Frame-driven ConvNi iits
s S : : : : : — corresponding Event-driven version. We will theunstrate this
£ XgT e 3 3 3 3 3 . with two example ConvNet exercises. One for detecthe
i X4T § § § § § . angle of rotated DVS recordings of walking humdhaiettes,
. } } } } } ~ and the other for recognizing the symbols of paleds when
© % ) : : : : : .. browsing the card deck in about one second in fobatDVS.
0 1 2 3 4 5 6ms time

The paper is structured as follows. The next Sactio

Fig. 2: lllustration of pseudo-simultaneity or coircidence property in a discusses timing differences between vision in &atriven

multi layer event-driven processing system. (a) Vien system composed ¢

Vision Sensor and five sequential processing stagdike in a ConvNet. (b)) and event-driven representations. Section Ill prissehe
Timing in a Frame-constraint system with 1ms frametime for sensing : _Ari

and per stage processing. (b) Timing in an Event-dven system witt mapplng method from a frame dr_lven system neurorarto
micro-second delays for sensor and processor events event-driven system neuron. Sections IV and V presgo

example ConvNet systems that use DVS recordings fexl
BVs retina chips. In Section IV the example targetsoblem
where the time constants of the observed worldsamdar to
those we humans are used to, while in the expetiriren
Section V illustrates the situation for higher gpexbserved
realities where DVS performance is pushed to itsitd.

after the flashThen each sequential stage would provide i
output 1ms after receiving its input. Thereforecognition
(last stage output) becomes available 6ms aftersymebol
flashed. Fig. 2(c) shows the equivalent when sensind
processing with event-driven hardware. Pixels ia $fensor
cr.eate and send out events as soon as ‘heY skgisechange, Finally Sections VI and VII present some discussiand the
with micro seconds delay [1],[2],[4],[5]. This wathe sensor conclusions.
output events at, are in practice simultaneous to the flashing
symbol in reality. The first event-driven stage gasses events
as they flow in, with sub-micro second delays [Bl][ As soon Il. TIMING IN FRAME-DRIVEN VS. EVENT-DRIVEN
as sufficient events are received representingrengieature, VISION REPRESENTATION
output events will be available. Thus, the outmatfire event In a Frame-driven representation visual processysgem
flow at x; is in practice coincident with the event flowxgt “Reality” is sensed as binned into time compartments of
The same happens for the next stages. Therefamgmition at duration Tpame. The implicit assumption is that the time
X5 becomes available during the first mili secondsasn as constantZ,eyiry, associated to the changes Redlity” is larger
the sensor provides sufficient events for correcognition. than Tpame Or, at most, similar. Iff;yiry is much larger than
This pseudo-simultaneity or coincidence property Trame (Reality moves slowly) then many subsequent video
becomes very attractive for event-driven processiystems frames would be quite similar and redundant. An gena
comprising a large number of cascaded event-drive@Pturing and processing system working on a frayngame
processors with or without feedback, as the ovenaiput can basis would repeat complex image processing armgnton
be available as soon as sufficient meaningful irguents are @lgorithms over a similar input, wasting computiegources.
provided. This contrasts strongly with state-of-tie If Zreality iS much smaller thaii,me (Reality moves very fast)
frame-driven vision sensing and processing, whexagies are then subsequent video frames would be considetiffgrent,
first detected by a camera, and then transferreantimage
processor.
In this paper we focus on vision systems comprising 1. As discussed in Appendix 2, with present daytetogy it is feasible to

. . develop compact hardware with thousands of evemedr convolution
event-driven sensor and a large number of evemédri modules [28].
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making it difficult or impossible to track objedtf®r example,
many flies in a box). Optimally, one would desice adjust
Tirame t0 be close to7igyiry SO that subsequent frames are
different enough to justify the computing resoureemployed,
but still similar enough to be able to track chamge

In an Event-driven vision sensing and processirgjesy, \;Flg 3: C?nvegtlonal |nd|t\1/|?ual neurgn uset(ti in Ftra;rrf ?rlven sr)]/?tems by
frames need not be Used. For example, |n Evend}lulrl reezmg Ime during each frame, and resetting Itstate 1or each rrame.
temporal contrast retina sensors (DVS), pixels gaaeoutput
events representingioving Reality” with time constants that
adapt naturally to Zygiry - In the particular case of lll. GENERIC MAPPING METHODOLOGY
fe_ed-forward multl-_layer Cor_wNets, subsequent Iaw_extr_act A Frame-driven Individual Neuron
visual features which are simple and short-rangéhéfirst
layers and progressively become more and more @xgid
longer-range in subsequent layers until specifil-sftale
objects are recognized. Typically, first layersragt edges and
orientations at different angles and scales, usimgrt-range
but dense projection fields (receptive fields). &aduent layers >
group these simple features progressively into gty more
sophisticated shapes and figures, using longeerbogsparser

h()

Fig. 3 shows the computational diagram of a typical
neuron in a Frame-driven representation systerutlgignals
y; come from the-th neuron of the receptive fiel®F;  of
neuronj, weighted by synaptic weights;; . Input signgjs
belong to range [0)] or [-A;, Aj]. Let us caIIy = yA , so that
y is normalized to unity. The state  of neujais reset for
each frame, and computed for its receptive fietdtie present

projection fields. Here we assume that the proongssime frame as

constants associated with the first feature extradayers is _ _ ~ _ ~

faster than those associated with later layerss Wy early % = _ > Vi = _ 2 AYIW = AreX

feature extraction layers would be short-range hntkpace 'ORE, THR (1)
and time, while later feature grouping layers would )“(j = Z g’iWi,-

longer-range also in both space and time. NotetHisitmakes i ORF,

a lot of sense, since simple features (such ag¢ stiges) need

to be sensed instantly, while for recognizing a plem shape where we have assumed thawalboefficients are the same for
(like a human silhouette) it would be more effitiém collect all neurons of the RF; receptive fieldA; = ARF . After this,
simple features during a longer time to be mordident. For the neuron state goes through a 5|gm0|dal fund‘[(om which
example, if we observe a walking human silhoueitesome we may define 55[22]

instants we may not see a leg or an arm, but if@ethem at

other instants, we know they are there. Conseqyeintla y; = h(x) = Atanh(§x) = Ajtanr(ﬁARF,;(j)
Frame-free Event-driven sensing and processingeisysive A A% @)
have the extra feature of adapting the time comnstareach y; = tanh(§ RFin)

processing layer independently. This provides ekieadom
degrees to optimize overall recognition, which @& directly
available in Frame-driven recognition systems.

We can describe this using only normalized varisile

. - . i = hX
At present, however, Frame-driven vision machine Yi = h(x) 3
learning algorithms are much more developed thasir th §(j = z 9iWij ®)
Event-driven counterparts. For example, over tha faw i ORF,

decades powerful and highly efficient training altfons have .

been developed and applied for Frame-driven CorgNewith h(z) = tanh(SﬂARFz) = (1/A)h(Z/ARF) A piece-
making them practical and competitive for a variefyreal wise-linear apprOX|mat|on di(-) canbe defined as
world applications [12]-[18]. Some researchers presently .

exploring the possibility of training Event-drivegstems, with how(X) = { X _'f X <1 (4)
promising results [19]-[21]. But this field is stiunder P x/Ix i x=1

development.

In the next Section we describe a method for mapfiie
parameters of a properly trained Frame-driven neurto the
equivalent Event-driven Frame-free parameters. \Wen t
illustrate this by applying it in ConvNet visualcognition
systems that use real recordings from a Frame- frl?ve
Event-driven DVS retina chip.

Fig. 4 shows the three nonlinear functidr(x) h,,(x) , and
h(x) for S = 2/3 andA; = Agr, = 1.7159.

B. Event-Driven Individual Neuron

Fig. 5 shows a schematic computational diagramrof a
nt-driven (spiking signal) neuron. In this casege plays a
crucial role, as opposed to the previous case wtiere is
frozen during all computations corresponding toaate. Now
the neural state<;  evolves continuously with timey. /B

2. LeCun [22] suggested settidg= 1.7159 and5 = 2/3 to optimize learning
speed and convergence in ConvNets.



4 (January 20, 2013 8:32 am)

2n 3rd

output output

(1) 1st spike| spike|
A output
spike

*thj )

Xrestt

“Xthj

Fig. 6: lllustration of a typical state evolution and spike production sequence for a spiking neuron ith leak and refractory period
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Fig. 4. Comparison between the three nonlinear furtions h(x) , hy,(x) ,
and h(x)
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Fig. 5: Computational Block diagram of Event-DrivenNeuron

represents stateé;  as being held in a box, whilekbments
capable of altering it have been drawn with arr@emting
towards this box. These elements are: (a) synaptinections,
(b) leak, and (c) a “reset and refractorRR&R) element.

Pre-synaptic neurons belonging to the receptivd &end
spikes in time. In general, spikes carry a positvenegative
sign, and synaptic weights also have a positivenagative
sign. In certain implementations (such as biolquygitive and
negative events (spikes) are separated into sepga#ts. Our

analyses are not affected by how this is implentente

physically. Each pre-synaptic spike will contribtitea certain
increment or decrementAx in the neuron state

proportional to the corresponding synaptic weigmj| The
neuron statex;  will accumulate all these contrimgiover
time, and at a given instant may have a positiveegative
accumulated value.

Fig. 6 shows an example of neural state evolutiod a
spike production. Let us define a characteristicetiTc; for
neuron j. A neuron can be considered a specific feature
detector for the collection of spatio-temporal ingpikes it
receives. For example, neurons in cortex layer pkeswhen
they detect sequence of spikes from the retinaesgmting
edges at specific scales, orientations, and pasitiwithin a
characteristic time interval. A neuron at a higlagrer may be
specialized in detecting specific shapes, like y aose, etc.
Such a neuron would generate spikes when the tolteof
input spikes from prior neurons represents a ciitie®f edges
and shapes that when put together during a chaistitdime
interval resemble an eye, nose, etc. In Fig. 6 veweh
represented; as a characteristic time during whezironj
receives a meaningful collection of spikes (repméag the
specific feature of neurgi that produce a systematic increase
in its state. Every time the state, reaches onehef
thresholdstx,, , th&R&R element will reset the state to its
resting level X, , while guaranteeing also a minimum
separation between consecutive spika&g; , called the
“Refractory Time” of this neuron. This refractorffest is
equivalent to the saturation functidg-) in the fragnen
system, as it limits the maximum output spike evatg.

If all neuronsi of the receptive field of neurgnhave the
same characteristic tim&;;  and/or refractory tifg we,
can define the “characteristic time gain” of neuras

Oy = Tg/ Tei )
and the “refractory time gain” of neurpmas
Or = T/ Tri (6)

We will use these definitions later.

Neurons will not accumulate all historic incomingjkes
contributions (similarly, in the frame-driven caseeurons
ignore information from previous frames). Since eunon is
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interested in grouping lower level features fromeyious D.Mathematical Analysisof Event-Driven Neurons

neurons during a characteristic tifig; , its stgtes subject With reference to Fig. 6, let us consider the sitwewhere
to a continuous leak that will drive its value tod&X, ., With neuronj becomes active as it receives a collection of grigp
a characteristic leak time constant. Flg 6 shouisear leak correlated spatio-tempora| input Spikes during metﬂ'cj_
for the neuron state, with a leak rate of vall® = |x,/ T j|  These represent the feature to which neyrinsensitive. In

o ) this case, the collection of spikes will produceystematic
C. Signal Encoding in Frame-Free Event-Driven Systems. increase in neurofs activity X, during timeTg; , resulting to

Low-Rate R"’_‘t?COdi ngor Coi.ncidence Processing . the generation of some output spikes, as illusdratd=ig. 6. If
In traditional frame-driven neural computing sys$emthe output spikes are produced with inter-spikerirdls larger

neuron states and neuron output values are usepltgsented than the refractory periotig; , then the number of spikes
with floating point precision. In some specializactelerated produced by neuropduring timeTg satisfies

hardware implementations, 8-bit signed integereasgntation

is used [23]. Still, this representation presentégh dynamic

range, since the ratio between the full range &edsmallest

step is 2 = 256. Note that in a recognition system, the outp Mo
of a neuron is not required to present such a kigtamic Tg Xinj Tej
range, since it only has to signal whether a feaisipresent or

not, or at the most provide a relative confidenbéctvcould be WhereAx,; is the loss of neural activigy  due to ledke
provided with coarse steps. For example, in a fiatection May safely assume that, during a systematic neg@lity
application, we would not expect it to be critizethether the Puild up that produces output events, leak doesdrive the
neurons detecting the nose can use just five vdlyed.25, activity down to the resting leved .y, nor produceshange
0.50, 0.75, 1.0] to give their confidence, or caa 856 steps in Of its sign. Under this assumption,

the range [0, 1]. A higher dynamic range might beessary to IAX| X

represent the visual input. Commercial video, po@phy and LR = = = 9)

z niwij'j —Axy

i ORF,

(8)

computer screens normally use 8-bit to represeninance.
However, we wil assume that our Event-dnven.vis&ﬁnsors If the systematic activity build up is sufficientfgst, then the
include a preprocessing step (such as spatial mpdeal
contrast) that significantly reduces the dynamiege of the
signals provided by their pixels. For example, ®epin the
temporal contrast DVS retina we have used, nornpathyides n 1

A< =
between 1 to 4 spikes when an edge crosses it. Tej = Ty (10)

In the following mathematical developments for magp
from the Frame-driven domain to the Event-drivemdin, we as is illustrated in Fig. 6 for the second and dthspikes
will consider that an intensity value in the fornemapped to produced by neuron during time Tg;. To take this into
a spike rate in the latter. Obviously, rate-codiaghighly account, the right hand side of eq. (8) needs tora® to
inefficient for high dynamic ranges such as 8-biécause a 1/Tg;. This can be expressed as
neuron would need to transmit 256 spikes to reptese

neuron activates its refractory mode and will ndibva
inter-spike intervals shorter thdg; , or equivalently

maximally_ meaningful signal. AIthough_ t_he following [Z ”iWij'] ~Ax

mathematical developments have no restrictionseimg of n 1 ORF T 1

dynamic range, we will always keep in mind that widl in =L = =h, : Hl<= (11)
Tei Ty P Xihj Tei| Tri

practice apply it to low dynamic range signals. el this
“Low-Rate Rate-Coding”, and the maximum number of spikes
a neuron will transmit during its characteristimé& constant
will be kept relatively low (for example, just awfespikes, or where howi () saturates to ‘1’ and is as defined in e}. (4
even as low as one single spike). This maximum runatd Using egs. (7) and (9), eq. (11) becomes

spikes isT¢;/ Tg; . Timelg is the minimum inter-spike time .

needed to signal the presence of a feature, vilijeis the L N Wij- _B (12)
characteristic time during which this feature miget present pwii | P} Xihj !

during a transient. Thus, let us call “persistengydf neuron 1ORE,
the maximum number of spikes that can be generayed
transient feature during tinTe;

P

where B = Tg;/T;; . Noting thaP;  will usually tend to be
much smaller than unity and that/p; 0[-1,1] , we can
P = T/ Try (7) establish a parallelism between bottom eq. (2)end12) by
means of the following mapping
Using all the above concepts and definitions, Etow
proceed to mathematically analyze the event-dmeamon and
propose a mapping formulation between frame-driagal

event-driven neuron parameters. 3. Here we are assuming a positive increase irstdte &' > X, ), reaching
the positive threshold and producing positive otitgeents. The analysis is
equivalent for the generation of negative events.
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Table 1. Summary of Event-Driven Neuron Parameters

Xthj threshold
ch characteristic time
TR refractory time
LR leak rate
P = Tcj/TR; persistency
95 = Tc; Mg characteristic time gain
Orj= TRj/TRi= Ijj refractory time gain
ﬁ = TRj /T|_j refractory-leak ratio

%

Fig. 7: Example snapshot images obtained by histograming events
during 80ms and rotating the &,y) addresses.

v oo L
¢ P Y Pi
L WP Wy ORy (13)
! XehiPj  Xihj Gy
h(-) = hyy(-)

Table 2. ConvNet Structure

C1 S2 C3 S4 C5 C6

Feature Maps (FM) 6 6 4 4 8 4
FM size 28x28 14x14 10x10 5x§ 1x1  Ix{L
kernels size 10x1p - 5x§ - 5x4 1x1

kernels 6 - 24 - 32 32

weights 600 - 600 - 800 32

trainable weights| 0 - 60Q - 80( 32

Convolutions: Convolutions: S,Z';XZL‘,‘;‘,‘;'};E Full

Gabor Filter
Bank

Programmable connection

Subsampling ~ kernels 5x5

kernels 5x5

1x1

28x28

Cl1 S2 C3 S4 C5 Co

input
Fig. 8: ConvNet structure for human silhouette ori@tation detection

changed from dark to bright during thesar®) while black
pixels represent negative events (light changeh fooight to
dark). One person walking generates about @€ (kilo
events per second) with this DVS camera. From these
recordings, we generated a set of images by cuoipetvents
during frame times of 3@s From these reconstructed images,
we randomly assigned 80% for training and 20% &stihg

Note that the kernel;’ weights used for the event-driverf€@rming  performance. Each 128x128 pixel roeconm[uc
realization are simply scaled versions of thosinédhin the IMage was downsampled to 32x32 and rotated 0°.1807 or

frame-based versiow; . Table 1 summarizes the differen€ /0%

event-driven neuron parameters discussed. As wesad in
the rest of the paper, when applying this mappinGdnvNets,
we will use the same mapping for all neurons in shene
ConvNet layer.

It is interesting to highlight that in a Frame-dnivsystem,
neuron stateg; can be interpreted as showing havh tiney
have changed during the frame tifig,,e after being reset,
and this frame time can in turn be

The training set images were used to train the
Frame-driven 6 layer Feed Forward ConvNet showridn 8.
Table 2 summarizes the number of Feature Maps (p&M)
layer, FM size, kernels size, total number of kirmer layer,
total weights per layer, and how many weights saaable.
The first layer C1 performs Gabor filtering at Jeotations
and 2 scales, and its weights are not trainedy&daperform

interpreted he {Subsampling and subsequent S layers perform feature

“characteristic timeTc of all neurons in the system. WherfXtraction and grouping. The last layer (C6) is adeature

mapping from a frame-driven description to an euditen
one, all neurons could therefore be made to haeaetichl
timing characteristics. However, as we will seeellabn,
neurons in different ConvNet layers will be allowedhave
different timing characteristics to optimize recigm
performance and speed.

IV. EVENT-DRIVEN CONVNET FOR HUMAN
SILHOUETTE ORIENTATION RECOGNITION

As an illustrative example of scenes moving at dpeee
humans are used to, we trained a frame-driven arersf a
ConvNet to detect the orientation of individual larmwalking
silhouettes. We used a 128x128 pixel DVS (dynanistom
sensor) camera [5] to record event sequences whssmnong
individual people walking. Fig. 7 shows somey) rotated
sample images obtained by collecting DVS recordeehts
during4 80ms White pixels represent positive events (lig

extraction layer, but a feature grouping layerpétrforms a
simple linear combination of the outputs of thevjoyas layer.
The top three neurons in layer C6 recognize a husithouette
rotated 0°, +/-90° or 180°. The bottom neuron dgliis
activated when the system does not recognize a muma
silhouette. Each output neuron fires both positind negative
events, depending on whether it is certain theré@gattern is
present or it is certain it is not present.

The weights from the Frame-driven system were then
mapped to an event-driven version by using the
transformations in egs. (13). Note that in a Feedwvérd
ConvNet, all neurons in the same layer operate igigntical
spatial scales (kernel sizes and pixel space sizesg, we will

4. Recordings were made by connecting the DVS cawniardSB to a laptop
running JAER [25]. JAER is an open software for mgimy AER chips and
boards, recording events, playing them back, andomeing a variety of

hirocessing operations on them. Appendix 3 givesed bverview of JAER.
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Layer C1 Layer 2 Layer C3 Layer S4 Layer C5 Layer C6
6 28x28 6 14x14 4 10x10 4 5x5 8 1x1 4 1x1

Noise

enlds || Jenids || Jenids || lenids || enids || Jenids || senids || senids

Fig. 9: Schematic block diagram used in simulator ERST

enforce that neurons in the same layer operate idéhtical Table 3: Parameters adjusted by heuristic rationale
g leak
jemporal sejes 10,2 Mt eah ey eXTSGSHEDO) [ T [ 0 | e | o [T | 0 [ [0 [ 4
replace index with the layer number indax, and index with C1 [0.Ims[ 0.6 | 1G™ | 60ms| 5ms | 40 - - |0.0017
the previous layer index-1. We also chos®;; = w;;" ineqs| c3 [05ms| 1 | 5T [200ms| 25ms| 40 5 5 | 0.005
(13), which enforcegz, = XipGen - C5 |10ms| 5 | 25T | 25 [100ms 10 | 20 | 4 | 0.004
However, egs. (5)-(7),(13) offer a high degreeregfiom ce | - 15 | 5% | 158 | - ; _ _ _

to map parameters. We first followed the heuristitonale
outlined below, but afterwards we ran simulated eating recognition rate, as mentioned in the next Sectiord
optimization routines to adjust the different paedens for yescribed in detail in Appendix 5.
optimum performance.

The temporal patterns generated by the 128x128 DWSResults
camera when observing walking humans are such @hat For testing the event-driven system we used new
minimum time of about 10-20s (about 100-600 events) isrecordings from the 128x128 pixel DVS camera olisgrv
needed to reconstruct a human-like silhoJette therefore people. These recordings where down-sampled tB#x&2
set the “refractory time” of the last refractoryyéa (C5) as input space.
Trs=10ms. On the other hand, the persistency of a moving T4 ryn the simulations on these recordings we ubed
silhouette is on the order of 1®8 (collecting events for over Address-Event-Representation event-driven simulaBRST
100msfuzzyfies the silhouette). Thuk.; = 10Qns . For Iaye(AER Simulation Tool) [24]. This simulator is brigf
C1, short range edges can be observed with evep@aed yegcriped in Appendix 4. It uses AER processinghkspeach
about 0.insin tlme._We ther_efore Séliz; =0,dms . For layelith one or more AER inputs and one or more AERpots.
C3 we chose an intermediate valig;=0,5ms . For th=Rr outputs and inputs are connected through AER
thresholds, we picked a value approximately equékice the ,qint.to-point links. Therefore, the simulator adescribe any
maximum kernel weight projecting to each layer. ffar leak AgR event-driven system through a netlist of AERdE with
rates we picked an approximate ratio of 2:1 betwepgint-to-point AER links. A list of DVS recordings provided
CO_?SGC_U“VG layers, so that the last layer C6 hiaslarate of 55 stimulus. The simulator looks at all AER linksl@rocesses
1s™. With these criteria, and considering tga, = XinnOin  the earliest unprocessed event. When an AER bloaesses
the resulting list qf parameters describing thenedgiven 5 input event, it may generate a new output eviindoes, it
system are shown in Table 3. will write a new unprocessed event on its outpuRAEK. The

Despite this heuristic method of obtaining a setimfng  simulator continues until there are no unprocessemhts left.
parameters for the 6 layer event-driven ConvNetalse used At this point, each AER link in the netlist contaia list of
optimization routines to optimize these paramefersbest time-stamped events. Each list represents the Ivitma of
spatio-temporal features represented by that Tihle resulting
visual event flow at each link can be seen with {hER
viewer. Fig. 9 shows the netlist block diagram dife t
5. A retina with higher spatial resolution (256x286512x512) multiplies the EVENt-Driven ConvNet system simulated with AERST. |
number of events produced (by 4 and by 16, respdgji for the same contains 19 splitter modules, 20 AER convolutiondules,
stimulus, but the events would still be producedrduthe same 10-20stime and 10 subsampling modules. In AERST the user eaoribe

interval. Therefore, we conjecture that increasspatial resolution reduces

recognition time, because the 100-600 events fst fecognition would be modules by defining the operations to be perforfuedeach
available earlier.
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Total Success
up side down Fr.ame non-empty Rate
y * T,,H.m e Tlme
Frames
hofizontal - 3 e 125ms 45 95.6%
j- «—» 100ms 63 96.8%
up =en 17ms ] 75ms 84 97.6%
@ b) 50ms 133 97.7%
0 1 2 3 4 5 6 705 051 052 053 054 30ms 225 96.4%
Time (sec) Time (sec) 20 ms 339 96 . 2%
Fig. 10: Recognition performance of the event-driven ConvNet in Fig. 10ms 674 93.5%
Small black dots correspond to input events, circles are output events 1
‘upright’ orientation (0°), crosses for ‘horizontal’ orientation (90°, 270°) Table 4. Performance of Frame-Driven Realization of the Human
and stars for ‘upside down’ (180°). (a) 7 sec recording of 20 consecul Silhouette Orientation Detection ConvNet

orientations, (b) zoom out of 40ms showing a recognition delay of 17ms

incoming event and include non-ideal effects such
characteristic delays, noise and jitter, limited precision, etc. \
described the modules using the performance characteristic
already manufactured AER hardware modules; specifical
available splitter and mapper modules implemented on FP(
boards [6],[9], and dedicated AER convolution chips wit
programmable kernels [8],[10]. A splitter module replicat
each input event received at each of its output ports wit
delay on the order of 20-108 Subsampling modules are
implemented using mappers. They transform ev
coordinates. In this _particular case, the mappers g 1L Fest roweing o s Foker Card Deel, () P ifen i
programmed to replace each input event coordingyg With  during 5ms.

(Lx/2],y/2]), where operandz| is “round to the lower

integer”. This way, all events coming from a 2x2 square 0 di q i h | btained wh :
pixels are remapped to a single pixel. Convolution moduf%_gpen ix 5 describes the results obtained when using a

describe AER convolution chip operations with programmabﬁgnwated annealing opFimizati(_)n_procedure to optimize these
kernels. Convolutions are computed and updated event rameters. The resulting optimized parameters are not too
event, as described in Appendix 2 different from the ones obtained by intuition, and the

. . recognition rate varied within the range 97.28% to 99.61%.
Using the parameters in Table 3 we tested the performance q . ; ith that of
of the Event-driven ConvNet in Fig. 9 when fed with event " Order to compare recognition performance with that of a

streams of DV'S captured walking human silhouettes rotated/@me-driven ConvNet realization, we used the same sequence

90°, 180°, and 270°, Each input stream segment consists oqutﬁvents and built sequences of frames using different frame

events, and theix(y) coordinates are consecutively rotated 0aeconstrucUon times. Each frame was fed to the frame-driven

90° or 270°, and 180°. Fig. 10 shows input events as Snie vNet. Table 4 shows, for each frame reconstruction time,
black dots. Output events are marked either with circlB§ fotal number of non-empty frames (some frames were

(“upright' or 0°), crosses Horizontal, or 90° and 270°), or empty because the sensor was silent during these times), and

stars (tipside dowhor 180°). Fig. 10(b) shows a zoom out fthe percent of correctly classified frames. As can be seen, the

the first transition from horizontal to upside down, where tF4CCeSS rate changes with frame reconstruction time, and

recognition delay is Ifis Average recognition delay wasSeems to have an optimum in the range 50-75ms frame time.

41ms and the fastest was 8m& The overall recognition
success rat&Rfor this stream was 96.5%, computed as the V. EVENT-DRIVEN CONVNET FOR POKER CARD

f The parameters in Table 3 were assigned by intuition.

average of the success rate per cate§&yFor each category SYMBOL RECOGNITION
i, its success rate is computed as In this Section we illustrate the method with a second
N B example, more oriented towards high speed sensing and
SR = }( Pi + Pj#i j (14) recognition. Fig. 11(a) shows an individual browsing a poker
2 pi+ +p; p]_+¢i P card deck. A card deck can be fully browsed in less than one

second. When recording such a scene with a DVS and playing

wherep, ; ) is the number positive (negative) output evedp§ event flow back with JAER one can freely adjust the frame

and P,-+¢i ;i ) are the positive (negative) output events fofene at very onv speed. I_:ig. 11(b) illustrates a reconstructed

andp;,;, = 0. pixels. A poker symbol fits well into a 32x32 pixel patch. We
] Z1 . . . .
made several high speed browsing recordings, built frames of
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Total Success| spade
Frame
. non-empty Rate heart
Time
Frames diamond
10m5 30 633% club G L | L 2 L 1
0 0.05 0.1 05 0.2 0.25 0.3 0.35 0.4
7mS 45 77 8% time (sec)
5ms 54 85.2% Fig. 12: Recognition performance of the Poker Card Symbol Recognitio
ConvNet.
ams 62 91.9% onvite
3ms 75 94.7% represents zero events during this mili second, brighter gray
2ms 34 05.2%, level means a net positive humber of events per pixel, while
ims 95 92.6% darker gray level means a net negative number of events per

pixel. The numbers on the top left of each reconstructed frame
indicate the total number of events present for all pixels in that
Feature Map during that mili second. Each row in Fig. 13

2ms time, and cropped many versions of poker symbols of gigéresponds to one ConvNet node or Feature Map. The top row
32x32 pixels. We selected a set of best looking frames to bgifdresponds to the 32x32 pixel input crop from the DVS retina.
a database of training and test patterns. The topologiEBF next 6 rows correspond to the 6 subsampled Feature Maps
structure of the Frame-driven ConvNet used for recogniziffy the first convolution layer, namely layer S2 14x14 pixel

card symbols was identical to the one described in the previgutputs. The next four rows correspond to the 5x5 Feature Map
Section. outputs of layer S4. The next 8 rows show the single pixel

The trained Frame-driven ConvNet was mapped to gytputs of Iayer C5, and the last fqur rows correspond to the
Event-Driven version, by using the same sets of learned kefR¥f Output pixels of layer 6, each indicating one of the four
weights and adjusting the timing parameters to the higiR@ker symbol categories. We can see that at the output layer C6
speed situation. To provide a proper 32x32 pixel input scdtfsles there is a sustained activity for the third row (which
we used an event-driven clustering-tracking algorithm [26] §gT"eSPonds to category “heart”) between mili seconds 6 and
track card symbols from the original 128x128 DVS recording?: Which is when the input symbol appeared more clearly.
since the instant they appeared until they disappeared. SH¥ing these 6ms there were 4 positive output events for this
time interval ranged typically from about 10-30ms per symb%i‘tegory’ which we artificially have binned into 1ms slots.
and the 32x32 crop could contain on the order of 3k to 6k To better illustrate the timing capabilities of multi-layer
events. We sequenced several of these tracking cregent-driven processing, we selected a 1ms cut of the input
containing all symbols and used the sequences as inputs t¢tieulus sequence in Fig. 13. We ran again the simulation for
Event-driven ConvNet. We then tested the Event-drivéfis 1ms input flash and obtained the results shown in Fig. 14.
ConvNet with the Event-driven AER simulator used in Sectidihere are five time diagrams in Fig. 14. The top diagram
IV and used the same Matlab simulated annealing routineg&presents aytimeg projection of the DVS retina events.
optimize timing parameters. Table 2 in Appendix 5 shows tResitive events are represented by circles and negative events
optimized parameters and performance results of sevépalcrosses. On top of each diagram we indicate the total
optimizations after running simulated annealing. ThHwmber of events in the diagram. The second diagram
recognition success rate, measured by eq. (14), varied betv@gresponds to the events in Feature Map 2 of Layer S2. The
90.1% and 91.6%. next diagram represents the events for Feature Map 3 of Layer

In order to compare the recognition performance with thaf- The next diagram shows the events of all 8 neurons in
of a Frame-driven ConvNet realization, we used the same inp@Y€" C5. and the bottom diagram shows the events of all
event recordings to generate frames with different frame timBgUrons in the output Layer C6. We can see that the neuron of
from Imsto 10ms Then we exposed the originally traine@at€gory “heart” in Layer C6 provided one positive output
Frame-driven ConvNet to these new frames and obtained $¥gNt- Fig. 14 illustrates nicely thepstudo-simultaneity”

recognition rates shown in Table 5. As can be seen, there i@@perty or coincidence processing of event-driven multi-layer

optimum frame time between 2 anth8 systems. As soon as one layer provides enough events
Fia. 12 shows an example situation of the out r(?presenting a given feature, the next layer Feature Map tuned

reco r?i'tion events of the evgnt-driven ConvNet whilepyg this feature fires events. This property is kept from layer to
g . Iag/er, so that output recognition can be achieved while the

sequence of 20 symbol sweeps was presented. The continuous L ;

line indi . ; : |n8ut burst is still happening.

ine indicates which symbol was being swept at the input, an } , ,

the output events are represented by different markers for each!n Order to characterize the internal representations and

category: circles for “club” symbol, crosses for «“diamonddynamics of this event driven network, we show in Appendix 7

symbol, inverted triangles for “heart’ symbols, and nd§Verse correlation reconstructions for the last layers with

inverted triangles for “spade” symbols. Fig. 13 shows tM@Wn to 0.1ms time windows.

details of the 14ms sequence of the 4th “heart” symbol input in

Fig. 12. Fig. 13 contains 14 columns. Each corresponds to VI. DISCUSSION
building frames using the events that appeared during one mili gyent-driven sensing and processing can be highly
second at some of the ConvNet nodes. Background gray c@l@tient computationally. As can be seen from the previous

Table 5. Performance of Frame-Driven Realization of the Poker Card
Symbol Recognition ConvNet
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Fig. 13: Image reconstruction for event flows at dferent ConvNet stages during a 14ms heart symbohed browsing. Images in this figure are built by
collecting events during 1ms. Event flows are comtuous throughout the full 14ms shown, but are artitially grouped in 1ms bins.Time advances fron
left to right in steps of 1ms. Images in the sameolumn use events collected during the same ms. Hpointal rows correspond to one single feature ma
output. Top row is a 32x32 pixel crop of the DVS dput tracking a 14ms heart symbol sweep through thecreen. Next 6 rows correspond to Layer S
subsampled 14x14 pixel Feature Maps. Next 4 rowsmtespond to Layer S4 subsampled 5x5 pixel Feature Mes. Next 8 rows correspond to Layer C!
single pixel features. Bottom 4 rows correspond tdhe Layer 6 outputs corresponding to the four recogmion symbol.

concluded. If the system includes feedback loopen tthe
computations have to be iterated several cyclesil unt

results (for example, Fig. 14), recognition occusile the
sensor is providing events. This contrasts strongiy the
conventional Frame-driven approach, where the sefist convergence, for each frame. However, in the Edenen
needs to detect and transmit one image. In comaiericieo, approach this is not the case. A DVS camera (or ather
frame rate i94,,me = 30-40ns Assuming instantaneous imagévent-driven sensor) produces output events widality” is
transmission (from sensor to processor) and irsteuus actually moving (with micro seconds delay per eyehhese
processing and recognition, the output would tltereefbe events are then processed event by event (withysiedé
available aftefTs e Of Sensor reset (the sensor is reset aft@round 1009). This effectively makes input and output event
sending out a full image). In practice, real tinmage flows simultaneous (we have called thssudo-simultaneity or
processors are those capable of delivering an buatpframe coincidence property throughout the paper), not only between
rate; that is, after a time&;, e Of the sensor making an imagehe input and output of a single event processofdiuhe full
available, or, equivalently, after P, me Of Sensor reset. cascade of processors, as in Fig. 9. Furthermitiee isystem
Another observation is that in a Frame-driven multincludes feedback loops, this coincidence propisrtgtained.
convolution system like the one shown in Fig. @ diperations Recognition delay is therefore not determined ty iamber

in layer n cannot start until operations in layerl have Of layers and processing modules per layer, but thgy
statistical distribution of meaningful input eveggnerated by
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Fig. 14: Events vs time for a simulation that usessastimulus a 1m
“heart” symbol cut of that in Fig. 13. Positive evets are drawn with
circles, while negative events use crosses. (a) levent flash from DV<
32x32 crop. (b) Events at 2nd Feature Map FM2 of Lagr S2. (c) Events ¢
FM3 of Layer S4. (d) Events at all 8 single pixel Fid of Layer C5. (e
Events at all 4 outputs of Layer C6. Layer C6 produce only 3 event
during this 1ms “heart” flash. From these 3 eventspnly one is positiv:
corresponding to the correct “heart” category.

the sensor. Improving the sensor event generatiechenism
would thus in principle improve the overall recdipn
performance and speed of the full system (as Isrigdoes not
saturate). For example, improving the contrastitieityg of a
DVS would increase the number of events generajeth®
pixels for the same stimulus. Also, increasing ispatsolution
would multiply the number of pixels producing outgvents.
This way, more events would be generated duringstrae
time, and the “shapes critical for recognition” diecome
available earlier.

System complexity is increased in a ConvNet by rgidi
more modules and layers. This makes it possibladmease
both the “shape dictionary” at intermediate layarsd the
“object dictionary” at the output layers. Howeven an
Event-driven system, increasing the number of meslyer
layer would not degrade speed response, as loitglass not
saturate the communication bandwidth of the inteduate
links.

links and modules, respectively. Each channel qn Bihas a
limited maximum event rate communication bandwidth.
Similarly, each module also has a maximum eventgssing
rate. Module (filter) parameters therefore havbd®et in such

a way that maximum communication and processingtenage

is not reached. Normally, the event rate is higberthe first
stages (sensor and C1), and decreases significkmtliater
stages. At least this is the case for the feeddaivConvNets
we have studied.

One very attractive feature of event-driven harewiarits
ease of scalability. Increasing hardware complexitgans
connecting more modules. For example, with predagthigh
end ASIC technology it is feasible to place sevéaaie size
(64x64 or 128x128) ConvModules (about 10) on alsichip,
together with companion routers (to program coriniggt and
mappers. An array of 10x10 of these chips can lieopua
single PCB, hosting on the order of 1k ConvModuléad
then, many of these PCBs could be assembled higcaly.
Several research groups are pursuing this typeaodware
assembly goals [27],[28],[30],[45]. In Appendix &wompare
in more detail frame vs. event-driven approachesidimg on
hardware aspects.

Regarding the sensor, we have focused our disassio
the DVS camera. However, there are many reported
Event-driven sensors for vision and audition. dJoshention a
few, there are also plain luminance sensors [&hg-to-spike
coded sensors [32], foveated sensors [33], spatatrast
sensors [34]-[35], combined spatio-temporal contsznsors
[36]-[37], and velocity sensors [38]-[39].

One of the limitations of Event-driven hardware gamed
to Frame-driven equipment is that hardware timetipleking
is not possible. For example, present day hardware
implementations of Frame-driven ConvNets [40] estesly
exploit hardware multiplexing by fetching intermatdi data in
and out between processing hardware and memory. \éy,
arbitrarily large systems can be implemented bgitg off
speed. This is not possible in Event-driven haréywas events
need to “flow” and each module has to hold itsantshneous
state.

Another disadvantage of Event-driven systems, atlat
present, is the lack of efficient, fast training.
Spike-Time-Dependent-Plasticity (STDP) [41] seemdé a
promising unsupervised learning scheme, but itlasv sand
requires learning synapses with special propefigs Other
research efforts are dedicated to algorithmic gwhst for
supervised STDP type learning [19]-[21]. However the
moment, this field is still quite incipient.

Nevertheless, Event-driven sensing and processag
many attractive features, and research in thisctime is
certainly worth pursuing.

VII. CONCLUSIONS

A formal method for mapping parameters from
Frame-driven (vision) neural system to an Eventalrisystem

a

This is one issue to be careful with in Event-dnivehas been presented. Given the extra timing coratides in

systems. Event traffic saturation is determined the
communication and processing bandwidth of the difieAER

Frame-free Event-driven systems, extra degreesemfddm
become available. This mapping was illustrated faylyang it
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Fig. 1: Typical Event-Driven DVS (Dynamic Vision Sensor) chip structure
and pixel diagram

I. APPENDIX 1. DVS CAMERA

Several DVS (Dynamic Vision Sensor) cameras haea be

reported recently [1]-[5]. They all share the schém
operation and structure shown in Fig. 1. Each pixeitains a
photosensor. Its photocurrent is transformed inlftmgarithmic
voltageV,oq = V,log(l,,) . This voltage is fed to aArplify

and Reset” (A&R) block, the output of which is given by

Iph(t)
Iph(to)) (1)

Viairi(t) = AV og(t) = Vigg(to)) = AVOIog(

wheret, is the time of the previous reset (and gvéntew

event is generated whéfy reaches one of the thresholds, @
eithe

ecluivalently, when  1,,(t)/15n(t,) reaches
C exp(Vy./AV,) or 1/C = exp(-V -/ AV,) . If Vg

reaches the positive threshold. a positive evegsélig out,
and if it reaches the negative threshwld a negatient is
sent out. R§Ported DVS sensors can %ave a coswasitivity
as low asC™
the array generate events asynchronously. Thesarlsiteated
by peripheral row and column arbiters [1]-[5],[8]3], and sent

off chip by writing the X,y) coordinates and sign of each pixe

event on the off-chip AER bus. The delay betweereaent
being generated in a pixel and written off chipyigically less
than s [5]. Maximum peak event rates of reported DVS shi
vary from Meps [1]-[2] to 2MMeps [5].

II. APPENDIX 2. AER CONVOLUTION CHIP

= 1,1 (10% contrast sensitivity) [5]. Pixels i

(xy)
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out Ack

x—arbiter
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Fig. 2: Typical Event-Driven Convolution Module Chip structure and

pixel diagram
Frames )
Events Event per second ggp:
Frame in Rate rendered afte?l
time Frame

/ Frame
File"Edit " Miew AEChip Intesfa USB MgsaTh D S Help
80.0ms@10.79s s, 63.91 keps,dfpS,Pause S= 2

Febi 18, 2011 12:24:54 PM net.sf jaer. graphics AEViewersvienLoop fosDelsy: INFO: vienLoop idle wait) was interrupted: java.lang.InterruptedE xeaption

| Binses | Fiters | pont render [ start Retegging| = | More

ig. 3: Example snapshot of event viewer window of JAER. In this

ample, events are histogrammed into 2D images for time intervals of
80ms. The frame shown contains 5113 events. The actual event rate was
63.91 keps, and frames were rendered at 10 frames per second with a
40msdelay.

Reported AER ConvChips (convolution chips) [8]YP to 64x64. They can also be assembled modularigD

[10]-[11] compute convolutions event by event. FAgshows a
typical ConvChip floorplan structure. It containg array of
pixels each holding its state. When an input evgn) is
received at the input port, the kernelf stored in the kernel
RAM is copied around the pixels at coordinaigy)( and
added/subtracted to/from the respective pixel sthbe pixel
state is compared against two thresholds, oneip®sihd one
negative. If the state reaches one of the threshalet pixel
sends out a signed event to the peripheral arbaarsthe pixel
coordinate with the event sign is written on thepati AER
bus. In parallel to this event-driven process,dhera periodic
leak process common to all pixels. A global leakckl
periodically decreases the neurons’ states towthels resting
level.

Reported AER ConvChips can handle input flows ofaip
20Meps, produce peak output event rates of up tuldis, and
have kernel sizes of up to 32x32 pixels and pixelyasizes of

arrays for processing larger pixel arrays (&M array of
64x64 ConvChips can process input spacedrp4)x(Mx64)
pixels).

Although at present reported ConvChips contain one
convolution module per chip, it is feasible to oate multiple
modules per chip (several tens) together with dedit event
routing and mapping modules [27]-[28],[45]-[46] modern
deep submicron CMOS technologies. Many chips o tyjpe
(about a hundred) could be assembled modularly &CB,
thus hosting thousands of convolutional modulesHi&B.

FPGA versions of Event-driven convolution modules a
also under development [29], and it is possibleptogram
hundreds of these in a single high end modern FRGA
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@
Fig. 4: Illustration of event recording time resolution adjustments with
JAER. (a) 5KHz rotating spiral photographed on analog phosphor
oscilloscope in x-y mode. (b) JAER playback of events recorded with DVS
camer a by setting frametimeto 1.2ms (1682 eventsin frame), (c) to 15645
(306 eventsin frame), and (d) to 8s (16 eventsin frame). Recorded event

rate was 2Meps.
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9MNext, we declare bl ocks

YINAMVE I N-CHANNELS ~ QUT- CHANNEL SPARAMS
splitter {parans1}
h_sobel {par ans2}

i nv ot at e90 {par ans3}
h_sobel {par ans4}

i nvot at e- 90 {par ans5}
mer ger {par ans6}
ack_only {par ans7}

STATES
{statel}
{state2}
{state3}
{stated}
{states}
(3,7} {state6}
{8} {state7}

Fig. 5: (top) Example block diagram of AER system. (bottom) Netlist file
describing it.
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[ll. APPENDIX 3. JAER VIEWER

source channels in the system. The following lidescribe
each of the instances, one line per instance im¢heork. The
first field in the line is the instance name, folled by its input
channels, output channels, name of structure agntgiits
parameters, and name of structure containing #&te.sEach
instance is described by a user-made function thg#ne name
of the instance. The simulator imposes no resbrictin the
format of the parameter and state structures. i$tét open to
the user writing the function code of each instance
Channels are described by two dimensional matrieash row

in the matrix corresponds to one event. Each row $ias
components

[X, \Z Sign' TpreRqst ' TRqst ' TAck] (2)

‘X" and 'y’ represent the coordinates or addresses of theteve
and ‘sign’ shows its sign. These 3 parameters aee'd¢vent
parameters”, and they are defined by the user. slimelator
only transports them through the channels, but doets
interpret them. We always usg/, and sign, but these can be
freely changed by the user, as long as the instamme®
interpret them appropriately. The last 3 fields event timing
parameters, and are managed by both the simulatbrtte
instances. Time T, e~ represents the time at which the
event is created at the emitter instandgyq ' regmessthe
time at which the event is received by the receiustance,
and ‘T, ' represents the time at which the event mslfy
acknowledged by the receiver instance. We distsigui
between a pre-Request tinig, ¢rqst and an effective Reques
time Trq - The first is dependent only on the emittestance,
while the second requires the receiver instandeetoeady to

The JAER (java AER) is an open source software toplocess an event request (i.e., not to be busyepsig a prior

written in java by T. Delbrick [25] for controllin§ER boards
and devices, visualizing event flows in 2D screeasprding
them on files, playing back recorded files, andfqrening a
variety of operations and filters on these flowig. B shows an
example snapshot of the JAER viewer window. Thewde
collects events during a given frame time to bail2D image.
These 2D images are sequenced on the computensEraene
time can be adjusted dynamically by key strokes rddav

microseconds or even less in case of very high dsp%

recordings. For example, Fig. 4 shows a DVS evectnding

event). This way, a full list of events describadyoby their
addresses, sign, aflgerqs;  times can be provided asesour
Once the events are processed by the simulatar, fihal
effective request and acknowledge times are estaddli

Initially, all times T,,, are set to ‘-1’ to label thems
“unprocessed” events. The simulator looks at akneiels,
selects the earliest (small€Bf, rqx ) UNprocessed eveld,
the instance of the corresponding channel and feenshe
event parameters to it. The instance returpgy, Bog '
dates its internal state, and eventually writes or more
new unprocessed output events on its output chaniéle

of a XKHz spiral on an analog oscilloscope, played back ghulator then searches all the channels agairthfernext

different frame times (118s, 156us, and &ss).

IV. APPENDIX 4. AERST SIMULATOR

In this simulator a generic AER system is describgda
netlist that uses only two types of elemerntstances and

channels. Aninstanceis a block that generates and/or produces

AER streams. AER streams constitute the branchethef
netlist in an AER system, and are calledannels. The
simulator imposes the restriction thatchannel can only
connect a single AER output from one instance tingle

unprocessed event. This process continues untié taee no
more unprocessed events left. The result of thelsion is a
list of timed events on all channels. These lisésthe flow of
events that would have been produced by a rea@systnd are
displayed by the JAER tool.

V. APPENDIX 5. PARAMETER OPTIMIZATION BY
SIMULATED ANNEALING

The timing and threshold parameters of a spikinguBizt
can be optimized. For this we called from within MAAB the

AER input of another (or the same) instance. Thay,w AERST simulation program running different inputjsences

channels represent point-to-point connections. plit and/or
merge channels, splitters and/or merger instancest roe
included in the netlist.

Fig. 5 shows an example netlist and its ASCII filetlist
description. The netlist contains 7 instances anth&nels.
The netlist description is provided to the simulatorough a
text file, which is shown at the bottom of Fig.CGhannel 1 is a
source channel. All its events are available arpéas an input
file to the simulator. There can be any arbitrapmber of

and providing the timing and threshold parametersefach
run. We then used the simulated annealing routiitleirwthe
MATLAB optimization toolbox to find optimum sets fdhe
timing and threshold parameters. The cost functionbe
minimized by the optimization routine was defined a
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Table 1
optimized parameters derived parameters performance

avg | min .

TRl TRS TR5 LR]_ LR3 LR5 LR6 TCl Tcg Tc5 Succ. an# min#
thy | thy | thg | th - - - - delay| dela
()| ()| (me) | | T3 | T | o (s (57 (57| 57| 9| IR | o) ey )| P | P )PS0 )Y eventstevents
0.10] 0.50[ 10.0p 0.6p 1.0 5.00 1.50 1(.00 500 2.00 [.00 [5@0025.00 25.00 100 500 50[0 14.0 96[47 4Q.88 8|41 609
1.23] 0.61 11.73 050 1.00 444 1.B9 6/48 815 13.84 10.44 |a%B0H 46.45 23.17 100 37|8 37.8 8|5 9837 51.85 23.50 P03
1.30] 0.79 11.75 0.68 0.96 453 1.p6 7/79 818 13.56 10.40 |0685 48.45 30.53 100 372 386 8|5 9819 59.40 26.83 P03
147 1.34 12.1p 0.7p 0.94 434 1pI 648 812 13.18 10.72 |®IL|49.73 48.1T 100 33|8 358 8[3 97[28 49.31 9|31 695
1.48] 1.34 12.2f 058 0.95 448 1.0 6J21 7.94 1358 10.52 |®@I6|51.50 48.89 100 34[7 365 82 97|70 44.71 9|26 659
1.36] 0.84 10.8B 0.7F 0.99 4.45 1.06 6|83 801 13.75 10.60 |@H02 54.95 34.15 100 404 40.9 9[2 9831 43.94 2043 p54
1.24]0.85 10.81 0.71 0.98 4.44 1.82 6|83 802 13.75 10.60 |58 50.26 34.77 10p 404 411 9[3 9961 43.21 1[93 645
0.51] 0.90[ 10.9¢ 0.68 1.00 4.44 145 6/80 786 1B3.80 10.78 (1282 20.60 36.64 100 406 40.7 9[2 9794 4837 12.02 [129
Table2
optimized parameters derived parameters performance

avg | min .

Tri | Tra | Trs LRy | LR3 | LR | LRg Ter| Tez | T succ. avg# | min#
thy | thg | ths | the | 1| 2| |, bt P P delay| dela

(msy|(ms) | ()| | 8| T T (s 57| 5| (57| 2| 9 e () (me) | P | P8 | P | o) | T eventsevents
0.00/ 0.10] 0.46 O0.6#f 1.42 7.36 2.7 0j72 090 121 .72 | - K60 | 000[&.00] O | 80| 12| 9157 597 0.2p 3085 1
0.00{ 0.07] 0.24 0.4p 1.55 7.02 339 1301 414 §32 217 | - [3.43 (1023 500 0| 14§ 21 90.10 6.2 2.22 31|80 1
0.00{ 0.08] 044 0.68 1.18 8.41 2.[7 1383 3.04 {96 £94 | - [.50 |7037] 5.000 0| 92| 11| 91.43 563 080 3145 1
0.00[ 0.19] 0.57 0.38 3.99 3.42 1.82 6j37 6/60 §.96 H.11 | - B.00 | W3|&6.00] 0 | 32| 8.8 91.36 4.68 033 3060 1
0.00| 0.14 0.54 038 4.20 3.40 1.82 872 6[60 4.90 5.13 | - B.86 | 066|4H.000 0 | 33| 9.3 90.35 4.26 0.1p 3420 1
whereN.¢ is the number incorrect positive evels;  thés Table 2 illustrates some optimized results for the
number of correct positive events, =1 b,= 0.1 , andxperiment on poker cards symbol detection. In dase

P = 10" if for some category there is no output eventtfregi reality moves much faster. Consequently, timingapeaters
positive nor negative). OtherwisB = 0 . With such higlere optimized to quite different values. We intemally set
value for P, the optimization discards directly those sets offractory time of the first layer to zero to alldar maximum
parameters that do not yield any output event foategory. speed. Paramet@gg was set to Bis because we observed that
Then, if there are output events for all categorilee process this is approximately the maximum time one could ®e
penalizes if there are incorrect positive everitgldo tries to reconstruct a reasonable good looking frame foymbsl.
maximize (with a weaker weight) the number of correRecognition rate for this experiment was in the gmn
positive events. 90.1-91.6%, which is lower than for the previoupement
Table 1 illustrates some optimized results for tH& human silhouettes. The obvious reason is thatmat only
experiment on human silhouettes detection. Each réR@lity is much faster, but the sensor provides atany more
corresponds to a different optimum, while the tapwr Noise events, and events are also much more sparse.
corresponds to the heuristic case described inddeby, for When comparing the timing parameters in Table 1 and
comparison. Table 1 shows the “optimized paramétéine Table 2 for the optimized event driven networkshwihe
“derived parametersTs was always set to 16®), and the results shown in Table 3 and Table 4 of the ma fizr the
following “performance” results: (a) success rdts), delays frame driven networks, it is interesting to nottbe following
(average and minimum) and (c) number of eventsirgt fobservation. The refractory time of the latest faygs
correct recognition (average and minimum). As cansben, provides a sense for the timing of the whole nekwive can
the optimizations produced parameters similar tor osee that for the silhouettes experim&gt is in the range of
“intuition” for all thresholds, refractory time$rs, Trs, and 10-12ms, while for the cards experiment it is ie tiange of
leak rated gy, andLrs. However, parameteii,, Lgs, andLgg 0.3-0.6ms. On the other hand, for the frame drigperiment
were optimized to quite different values. As a tedlerived results shown in Table 3 and Table 4, we can seephimum
parameterggg andT¢, differ, but parameterggs, Tca, P1, P3, frame times were about 50-75ms for the silhouettes about
ps were quite similar. On the other hand, success was 2-3ms for the cards. Thus, there seems to be erfatabout 5
improved for the optimized cases as seen in Tab#dtllough between thélrs optimum parameters and the optimum frame
speed response was degraded. The number of eegpised times in Table 3 and Table 4. However, this corioluss quite
to achieve first recognition was on average betw&@h and speculative at this point and needs to be verifmdmore
900 events, captured during 40 ton@0For some transitions varied experiments.
and optimizations, the minimum number of eventbtteless

than 100 events, with delays aroundrg@nd below. This is | APPENDIX 6: COMPARISON OF FRAME-DRIVEN
due to the statistical distribution of the firsteet front, aftera  vS. EVENT-DRIVEN HARDWARE REALIZATIONS
transition (if first front events are distributecbre uniformly

over the entire silhouette, then recognition isegs In order to compare Frame-Driven vs. Event-Driven

hardware ConvNet performance we rely on some regort
example realizations and comparisons [43]-[46],wedl as
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Present State-of-the-art Future Outlook
Frame-driven Frame-driven Event-Driven Frame-driven riERriven
nVidia GTX480 GPU| Virtex6 Purdue/NYU Virtex6 IMSE/US 3D ASIC Grid 40nm
Purdue/NYU
Input scene sizeg 512x512 512x512 128x128 512x512 512x512
Delay 2.7ms/frame 5.5ms/frame p8/event 1.3ms/frame 10ns/event
Gabor array |16 convs 10x10 kernels 16 convs 10x10 kernels 64cafhx11 kernels 16 convs 10x10 ker 1e|s100 ﬁg?r\]/;:in%Z
Neurons 4.05x16 4.05x16 2.62x10 4.05x1¢ 108
Synapses 4.05x1¢ 4.05x1¢ 3.20x10 4.05x1¢ 10t
Conn/s 1.6x10 7.8x101° 2.6x10 3.0x10* 4.0x10°
Power 220W 10w 10W 3w 0.25W @ 10Meps/ch

Table 3. Har dwar e Per formance Comparison of present and futuristic projections on Framevs. Event-Driven Realizations

some futuristic projections [46]. Table 3 summasibardware
performance figures for three implementations. fits three
columns correspond to present day state-of-thevhite the
last two are for futuristic projections. All of ttmeecorrespond to

second) event communication rate per link. If eablp has
four such links in a grid, communication power peip would
be about 0.5mW. Assuming in-chip event-rate depende
power is twice and background power is similar,heabip

implementing a set of Gabor convolution filters. eThcould consume about 2.5mW when generating 10MepgidA
frame-driven cases correspond to implementing 1®oGaof 100 of those chips would dissipate 250mW.

filters with kernel of size 10x10 pixel operatingn anput

images of size 512x512 pixels. For the frame-drigramples
speed is expressed in frames per second. The GHilZateon

is very fast but consumes a high power, while theeX6

realization [43]-[44] is comparable in speed buhsumes
twenty times less power. The futuristic projectafrthis same
system on an ASIC using IBM 65nm 3D technology ioves
speed by about five times and power a factor @@hRecently,
an event-driven configurable ConvNet array impletegéron
Virtex6 is reported [45]-[46] (3rd column in Tal®@. Speed is
expressed in terms of computation delay per evBirice
event-driven systems are pseudo-simultaneous, ittexedl

output is available as soon as enough represeatatiput
events are received. Therefore, speed response ofs
determined by the delay of the hardware, but bysthéstical
timing distribution of the events provided by thensor. The
power dissipation of a system implemented in an AR&
mainly determined by FPGA clock and resources uSatte
the frame-driven and event-driven Virtex6 realiaa$ in the
2nd and 3rd columns of Table 3 have the same @ockuse
similar FPGA resources, power consumption is alsdlar.

A futuristic projection of
convolution chip fabricated in 40nm technology che
estimated to host one million neurons and one gigepses
[11], while processing events with delays of 10kssembling
AER grids [45] of such chips with 100 chips per PEBinted
Circuit Board) results in the estimated performaatée last
column in Table 3. AER processing chips power corsion
has two components, one that scales with the nuofbarents
processed per unit time, plus another backgroumidpooent
which is constant. A great amount of power is comsd by
inter-chip event communication. Using modern lowwpo
serial drivers [47] that consume 2.25mW at 6.25€t/s
combined with circuit techniques that scale powéhwevent

an event-driven AER

VIl. APPENDIX 7: REVERSE CORRELATION
RECONSTRUCTIONS

In order to characterize the internal represematiand
dynamics of the resulting event driven networks sivew here
reverse correlation reconstructions [50] for thepat layer
neurons as well as for the layer C5 neurons (sgedFdf main
paper). The purpose of reverse correlation recocisbn is to
discover what type of spatio-temporal patterngi{atinput or
at intermediate feature maps) elicit activation afgiven
neuron. For example, if in the poker cards expemnimee pick
the output neuron for category ‘heart’, we follohetnext
steps: (1) for all trials of all test simulationge pick the full
n
list of ‘heart’ category output eventod,t(K)} that were
positive; (2) for a given time windovi,, before each output
eventk, we look at the neurorjave are interested in, and count
for each the number of positive;(T,) and negativen;(T,)
events that occurred during this time window; (3) @ompute
for each of these neurons of intergstthe following
reconstruction value

K
> (py(Ty) —nng(Ty))
rj(Tw) = k=L

KT, “)
This number represents the average number of e(ettgity)
of a pixelj that would contribute to trigger one event at the
output neuron representing category ‘heart’. Thikrage

number is also normalized with respect to the eizthe time

window T,, , so that one can compare graphically short time

windows with respect to larger time windows. Ndtatt as the
Tyincreases, the number of events also tends toasere

Fig. 6(a-d) shows the reverse correlation reconsim for

rate [48]-[49] it would be feasible to reach a powel four output category neurons (Layer C6), argl B{e-l) for
consumption figure of 11BNV at 10Meps (mega events per



 Jokeq

 Jokeq

 Jokeq

(January 16, 2013 3:17 pm)

16 Y0’y
(u) ®)

s 1977 L 89€ 5
E g )
N 60°¢] N 0°¥] N}

ov°0) s W= 95°0)

T 3

20| , : €L0|
5 . 5 . E
g 260 2 e g

: (sw) oL

VLl

NEN

8¢ ¢ S
(&) 0
- 0z’ = W'Y - 29g] =
o o o o
~ ~ ~ ~
2 5 N 2
L 887¢| N 187 N 65°¢) N
S0 - .- 2£°0) z20)
9¢°0| €0l S0
= 5 =1 . B . =k
B 560 = 0£°0| 2 PeH ]
(sw) o} S0 GZ0 L0 (sw) oL (sw) o

‘Risuelul

Ae b [e 11us0 auwres
ay) 01 paddew shkemfe
sioaneA oe|q

1593 fep Jo auym
1s91yB1ig 8y} eyle

0] paddew usaq sey
yoiym ‘™) smopuim
(®) awn e Jo)moiden
8.Injes- siy1 uispxid
|[e JoaneAanjosqe
wnwixew ay}
SaIedIpUl JAquinu ay}
MOJ ydes Jo 1ybiiayy
0l ¥S lAe josde |y
aJinyea pxIid Gxg
¥8Y1 01 puodsa 1 jod
SMOJ {7 1XaU

ay1 pue ‘zs phe
Jjosde |\ ainyea
pxid yTXyT 98y}

0] puodsa 1102 SMO

9 peUay} ‘upled
indut jexid zexze

 Joke

_I
]
<
@
[N)

ndu |

5

— 00l —
,m m 8Y1 01Spu0dss 1 Jod
= 608 - Mo doy 'smojjo}
seaeaInblgns

4 yoes JoSMOJ TT 8y |

) —  sw{o0oT‘'05'5Z20T

ke ‘50620 ‘T0 ="

MOPUIMBWI] 1S BYIP

0€'9 veY S6'S B 0)SpU0dsa 1109

©) ( ®) suwnjod / ay}

e er'g e 'Y RE £ Joyodeg smol Tt pue
% s K K suwnjod / Jo oresow
N £r'g| N 1] N 89'g| N B SMous aInblygns
yoe3 *(]-9) suounau

v 00'l se'l GO Joke pue (p-e)
suoJnau 9) JeAe

g — 60'1 L20) 901 ndino Jojsueied
dewainyes) pue 1ndul

: _ 3 6c] 3 I 3 91zl _ H JO UO11dN 3ISUCIS 4
= = 5 & uolepJJod
(sw) o} 50 620 L0 (sw) o1 (sw) o} sy 9 B4




6 (January 16, 2013 3:17 pm)

all eight Layer C5 neurons. Each Layer C6 or C5romu
reconstruction corresponds to one subfigure. Eadffigure
has 7 columns and 11 rows. Each column corresptmds
different value of the time windoW, , taking the value§,, =
{0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0}ms. The fitsip row
corresponds to the 32x32 pixel input. The next sws
correspond to the six 14x14 pixel Feature Maps afdr S2
(see Fig. 9 of main paper). And the next four r@hsw the
reconstructions of the four 5x5 pixel Feature Mapd.ayer
S4. The gray level coding is common for each roent@al
gray corresponds tg(T,) = 0. The number to the right of each
row is the maximum absolute value ofT,) among all
neurons of all Feature Maps in that row. This maximvalue
is corresponds to brightest white or darkest blgoyscale
value for this row gray level coding.

As can be seen in all subfigures, as the time windlp
increases, the values of the reconstructiofs,) tend to
decrease slightly. We can see that the correct jpgterns can
be already seen for time windowsTyf = 0.1ms, and seem to
be optimum foiT,, between 1ms and 2ms.

Another observation is that the full subfigure Fige) is
empty: no positive events were elicited duringtiddls for the
first neuron of Layer C5. This neuron only producedgative
events. This means that this neuron specializetheimome
negative when detecting the presence of specifatufes.
Similarly, note that the neurons in the second Wrealiap of
Layer S4 have also specialized on negative eveaislyn


https://www.researchgate.net/publication/256837357



