
1 (January 20, 2013 8:32 am)

Mapping from Frame-Driven to Frame-Free Event-Driven
Vision Systems by Low-Rate Rate-Coding and Coincidence

Processing. Application to Feed-Forward ConvNets
J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen and B. Linares-Barranco

Abstract - Event-driven visual sensors have attracted interest
from a number of different research communities. They provide
visual information in quite a different way from conventional
video systems consisting of sequences of still images rendered at a
given “frame rate”. Event-driven vision sensors take inspiration
from biology. Each pixel sends out an event (spike) when it senses
something meaningful is happening, without any notion of a frame.
A special type of Event-driven sensor is the so called
Dynamic-Vision-Sensor (DVS) where each pixel computes relative
changes of light, or “temporal contrast”. The sensor output
consists of a continuous flow of pixel events which represent the
moving objects in the scene. Pixel events become available with
micro second delays with respect to “reality”. These events can be
processed “as they flow” by a cascade of event (convolution)
processors. As a result, input and output event flows are
practically coincident in time, and objects can be recognized as
soon as the sensor provides enough meaningful events. In this
paper we present a methodology for mapping from a properly
trained neural network in a conventional Frame-driven
representation, to an Event-driven representation. The method is
illustrated by studying Event-driven Convolutional Neural
Networks (ConvNet) trained to recognize rotating human
silhouettes or high speed poker card symbols. The Event-driven
ConvNet is fed with recordings obtained from a real DVS camera.
The Event-driven ConvNet is simulated with a dedicated
Event-driven simulator, and consists of a number of Event-driven
processing modules the characteristics of which are obtained from
individually manufactured hardware modules.

Indexing Terms: Feature Extraction, Convolutional Neural
Networks, Object Recognition, Spiking Neural Networks, Event
Driven Neural Networks, Bio-inspired Vision, High Seed Vision.

I. INTRODUCTION

In 2006 Delbrück presented the first Event-Driven
Dynamic Vision Sensor (DVS) [1]-[2], inspired by Kramer’s
transient detector concept [3]. This was followed and improved
by other researchers [4]-[5]. The DVS presents a revolutionary
concept in vision sensing, as it uses an Event-driven
Frame-less approach to capture transients in visual scenes.

A DVS contains an array of pixels (i,j) where each pixel
senses local light Iij and generates an asynchronous “address
event” every time light changes by a given relative amount C >
1 (if light increases: when , or if light
decreases: when). The “address event”
consists of the pixel coordinates (xij,yij) and sign sij of the
change (increment or decrement). This “flow” of asynchronous
events is usually referred to as “Address Event Representation”
(AER). Every time a DVS pixel generates such event, the event
parameters (xij,yij,sij) are written on a high speed asynchronous
digital bus with nano-second delays. A DVS pixel typically
generates one to four events (spikes) when an edge crosses it.
DVS output consists of a continuous flow of events (spikes) in
time, each with sub-microsecond time resolution, representing

Ii j t() Iij to()⁄ C=
Ii j t() Iij to()⁄ 1 C⁄=

the observed moving reality as it changes, without waiting to
assemble or scan artificial time-constrained frames (images).

As an illustration, Fig. 1 shows the event flow generated
by a DVS when it observes a black 400Hz rotating disk with a
white dot. On the right, events are represented in 3D
coordinates (x,y,t). When a pixel senses a dark-to-bright
transition it sends out positive events (dark dots in Fig. 1), and
when it senses a bright-to-dark transition it sends out a
negative event (gray dots in Fig. 1). Appendix 1 explains the
operation of a typical DVS camera in more detail. The flow of
events generated by a DVS can be captured with an event
logger board [6]-[7], and written on a file with corresponding
time-stamps. This file contains a list of signed time-stamped
events (t,x,y,s).

Recorded time-stamped events can be processed off-line to
perform filtering, noise removal, shape detection, object
recognition, and other operations. However, it is more
desirable to develop event-driven processing hardware to
process events as they are generated by the DVS, without
time-stamping them, and to operate in true real time. For
example, some event-driven convolution processors have been
recently reported for performing large programmable kernel
2D convolutions on event flows [8]-[10]. Appendix 2 briefly
explains the operation of a typical AER (Address Event
Representation) programmable kernel convolution chip. One
very interesting property of this event-driven processing is
what we call here “pseudo-simultaneity” or “coincidence”
between input and output event flows. This concept is
illustrated with the help of Fig. 2. A vision sensor is observing
a flashing symbol that lasts for 1ms. The sensor then sends its
output to a 5-layer Convolutional Neural Network for object
recognition, as shown in Fig. 2(a). In the case of conventional
Frame-Driven sensing and processing, the sequence of
processing results would be as depicted in Fig. 2(b). Assuming
sensor and each processing stage respond in 1ms, the sensor
output image would be available during the next mili second

Fig. 1: Example illustration of DVS camera output event flow when
observing a black rotating disk with a white dot, rotating at 400Hz.

Authors are with the Instituto de Microelectrónica de Sevilla
(IMSE-CNM-CSIC) Spain, the Dpto. Teoría de la Señal, ETSIT, University of
Sevilla, Spain, and with Nanyang Technological University, Singapore.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/161813865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 (January 20, 2013 8:32 am)

after the flash. Then each sequential stage would provide its
output 1ms after receiving its input. Therefore, recognition
(last stage output) becomes available 6ms after the symbol
flashed. Fig. 2(c) shows the equivalent when sensing and
processing with event-driven hardware. Pixels in the sensor
create and send out events as soon as they sense a light change,
with micro seconds delay [1],[2],[4],[5]. This way, the sensor
output events at xo are in practice simultaneous to the flashing
symbol in reality. The first event-driven stage processes events
as they flow in, with sub-micro second delays [8]-[11]. As soon
as sufficient events are received representing a given feature,
output events will be available. Thus, the output feature event
flow at x1 is in practice coincident with the event flow at xo.
The same happens for the next stages. Therefore, recognition at
x5 becomes available during the first mili second, as soon as
the sensor provides sufficient events for correct recognition.

This pseudo-simultaneity or coincidence property
becomes very attractive for event-driven processing systems
comprising a large number of cascaded event-driven
processors with or without feedback, as the overall output can
be available as soon as sufficient meaningful input events are
provided. This contrasts strongly with state-of-the-art
frame-driven vision sensing and processing, where images are
first detected by a camera, and then transferred to an image
processor.

In this paper we focus on vision systems comprising an
event-driven sensor and a large number of event-driven

processing modules used to perform object recognition tasks1.
To do so, we will concentrate on a particular type of
bio-inspired vision processing structures called Convolutional
Neural Networks (ConvNets) [12]. Reported ConvNets operate
based on Frame-Driven principles, and are trained by
presenting them with a database of training static images
(frames). On the other hand, training of event-driven
processing modules is still an open research problem. Some
preliminary and highly promising work on this can be found in
literature [19]-[20]. However, its application to large scale
systems is presently not practical. Therefore, in this paper we
present an intermediate solution. First, we build a database of
training images (frames) by collecting events from a DVS
camera during fixed time intervals. Second, we train a
Frame-driven ConvNet with this database to perform object
recognition. Third, we map the learned parameters of the
Frame-Driven ConvNet to an Event-Driven ConvNet, and
finally we fine-tune some extra available timing-related
parameters of the Event-Driven ConvNet to optimize
recognition. To do this process, we provide a methodology for
mapping the properly trained Frame-driven ConvNet into its
corresponding Event-driven version. We will then illustrate this
with two example ConvNet exercises. One for detecting the
angle of rotated DVS recordings of walking human silhouettes,
and the other for recognizing the symbols of poker cards when
browsing the card deck in about one second in front of a DVS.

The paper is structured as follows. The next Section
discusses timing differences between vision in frame-driven
and event-driven representations. Section III presents the
mapping method from a frame-driven system neuron to an
event-driven system neuron. Sections IV and V present two
example ConvNet systems that use DVS recordings from real
DVS retina chips. In Section IV the example targets a problem
where the time constants of the observed world are similar to
those we humans are used to, while in the experiment in
Section V illustrates the situation for higher speed observed
realities where DVS performance is pushed to its limits.
Finally Sections VI and VII present some discussions and the
conclusions.

 II. TIMING IN FRAME-DRIVEN VS. EVENT-DRIVEN
VISION REPRESENTATION

In a Frame-driven representation visual processing system
“Reality” is sensed as binned into time compartments of
duration Tframe. The implicit assumption is that the time
constant τreality associated to the changes in “Reality” is larger
than Tframe or, at most, similar. If τreality is much larger than
Tframe (Reality moves slowly) then many subsequent video
frames would be quite similar and redundant. An image
capturing and processing system working on a frame by frame
basis would repeat complex image processing and recognition
algorithms over a similar input, wasting computing resources.
If τreality is much smaller than Tframe (Reality moves very fast)
then subsequent video frames would be considerably different,

(c)

0

x1

x2

x3

x4

x5

x0 x1 x2 x3 x4 x5

S
en

so
r

x5

x4

x3

x2

x1

x0

0 1 2 3 5 6ms4

Reality

Reality

F
ra

m
e−

B
as

ed
E

ve
nt

−
B

as
ed

time

time

(a)

(b)

x

Fig. 2: Illustration of pseudo-simultaneity or coincidence property in a
multi layer event-driven processing system. (a) Vision system composed of
Vision Sensor and five sequential processing stages, like in a ConvNet. (b)
Timing in a Frame-constraint system with 1ms frame time for sensing
and per stage processing. (b) Timing in an Event-driven system with
micro-second delays for sensor and processor events.

1. As discussed in Appendix 2, with present day technology it is feasible to
develop compact hardware with thousands of event-driven convolution
modules [28].

3 (January 20, 2013 8:32 am)

making it difficult or impossible to track objects (for example,
many flies in a box). Optimally, one would desire to adjust
Tframe to be close to τreality so that subsequent frames are
different enough to justify the computing resources employed,
but still similar enough to be able to track changes.

In an Event-driven vision sensing and processing system,
frames need not be used. For example, in Event-driven
temporal contrast retina sensors (DVS), pixels generate output
events representing “Moving Reality” with time constants that
adapt naturally to τreality . In the particular case of
feed-forward multi-layer ConvNets, subsequent layers extract
visual features which are simple and short-range in the first
layers and progressively become more and more complex and
longer-range in subsequent layers until specific full-scale
objects are recognized. Typically, first layers extract edges and
orientations at different angles and scales, using short-range
but dense projection fields (receptive fields). Subsequent layers
group these simple features progressively into gradually more
sophisticated shapes and figures, using longer range but sparser
projection fields. Here we assume that the processing time
constants associated with the first feature extraction layers is
faster than those associated with later layers. This way early
feature extraction layers would be short-range both in space
and time, while later feature grouping layers would be
longer-range also in both space and time. Note that this makes
a lot of sense, since simple features (such as short edges) need
to be sensed instantly, while for recognizing a complex shape
(like a human silhouette) it would be more efficient to collect
simple features during a longer time to be more confident. For
example, if we observe a walking human silhouette, at some
instants we may not see a leg or an arm, but if we see them at
other instants, we know they are there. Consequently, in a
Frame-free Event-driven sensing and processing system, we
have the extra feature of adapting the time constant of each
processing layer independently. This provides extra freedom
degrees to optimize overall recognition, which is not directly
available in Frame-driven recognition systems.

At present, however, Frame-driven vision machine
learning algorithms are much more developed than their
Event-driven counterparts. For example, over the last few
decades powerful and highly efficient training algorithms have
been developed and applied for Frame-driven ConvNets,
making them practical and competitive for a variety of real
world applications [12]-[18]. Some researchers are presently
exploring the possibility of training Event-driven systems, with
promising results [19]-[21]. But this field is still under
development.

In the next Section we describe a method for mapping the
parameters of a properly trained Frame-driven neuron into the
equivalent Event-driven Frame-free parameters. We then
illustrate this by applying it in ConvNet visual recognition
systems that use real recordings from a Frame-free
Event-driven DVS retina chip.

 III. GENERIC MAPPING METHODOLOGY

A. Frame-driven Individual Neuron

Fig. 3 shows the computational diagram of a typical
neuron in a Frame-driven representation system. Input signals

 come from the i-th neuron of the receptive field of
neuron j, weighted by synaptic weights . Input signals
belong to range [0, Ai] or [-Ai, Ai]. Let us call , so that

 is normalized to unity. The state of neuron j is reset for
each frame, and computed for its receptive field for the present
frame as

(1)

where we have assumed that all Ai coefficients are the same for
all neurons i of the RFj receptive field . After this,
the neuron state goes through a sigmoidal function , which
we may define as2 [22]

(2)

We can describe this using only normalized variables as

(3)

with = = . A piece-
wise-linear approximation of can be defined as

(4)

Fig. 4 shows the three nonlinear functions , , and
 for and .

B. Event-Driven Individual Neuron

Fig. 5 shows a schematic computational diagram of an
Event-driven (spiking signal) neuron. In this case, time plays a
crucial role, as opposed to the previous case where time is
frozen during all computations corresponding to a frame. Now
the neural state evolves continuously with time. Fig. 5

2. LeCun [22] suggested setting A = 1.7159 and S = 2/3 to optimize learning
speed and convergence in ConvNets.

wij...

iy Σ

h()

xj
yj

Fig. 3: Conventional individual neuron used in Frame-driven systems, by
freezing time during each frame, and resetting its state for each frame.

yi RFj
wij yi

y ŷA=
ŷ xj

xj yiwi j

i RFj∈
∑ Aiŷiwi j

i RFj∈
∑ ARFj

x̂j= = =

x̂j ŷiwi j

i RFj∈
∑=

Ai ARFj
=

h ·()

yj h xj() Aj Sjxj()tanh Aj SjARFj
x̂

j
()tanh= = =

ŷj SjARFj
x̂

j
()tanh=

ŷj ĥ x̂j()=

x̂j ŷiwi j

i RFj∈
∑=

ĥ z() SjARFj
z()tanh 1 Aj⁄()h z ARFj

⁄()
ĥ ·()

hpwl x()
x if x 1≤

x x⁄ if x 1≥



=

h x() hpwl x()
ĥ x() S 2 3⁄= Aj ARFj

1.7159= =

x'j

4 (January 20, 2013 8:32 am)

represents state as being held in a box, while the elements
capable of altering it have been drawn with arrows pointing
towards this box. These elements are: (a) synaptic connections,
(b) leak, and (c) a “reset and refractory” (R&R) element.

Pre-synaptic neurons belonging to the receptive field send
spikes in time. In general, spikes carry a positive or negative
sign, and synaptic weights also have a positive or negative
sign. In certain implementations (such as biology) positive and
negative events (spikes) are separated into separate paths. Our
analyses are not affected by how this is implemented
physically. Each pre-synaptic spike will contribute to a certain
increment or decrement in the neuron state

proportional to the corresponding synaptic weight . The
neuron state will accumulate all these contributions over
time, and at a given instant may have a positive or negative
accumulated value.

Fig. 6 shows an example of neural state evolution and
spike production. Let us define a characteristic time for
neuron j. A neuron can be considered a specific feature
detector for the collection of spatio-temporal input spikes it
receives. For example, neurons in cortex layer V1 spike when
they detect sequence of spikes from the retina representing
edges at specific scales, orientations, and positions, within a
characteristic time interval. A neuron at a higher layer may be
specialized in detecting specific shapes, like an eye, nose, etc.
Such a neuron would generate spikes when the collection of
input spikes from prior neurons represents a collection of edges
and shapes that when put together during a characteristic time
interval resemble an eye, nose, etc. In Fig. 6 we have
represented as a characteristic time during which neuron j
receives a meaningful collection of spikes (representing the
specific feature of neuron j) that produce a systematic increase
in its state. Every time the state reaches one of the
thresholds , the R&R element will reset the state to its
resting level , while guaranteeing also a minimum
separation between consecutive spikes , called the
“Refractory Time” of this neuron. This refractory effect is
equivalent to the saturation function in the frame-driven
system, as it limits the maximum output spike event rate.

If all neurons i of the receptive field of neuron j have the
same characteristic time and/or refractory time , we
can define the “characteristic time gain” of neuron j as

(5)

and the “refractory time gain” of neuron j as

(6)

We will use these definitions later.

Neurons will not accumulate all historic incoming spikes
contributions (similarly, in the frame-driven case, neurons
ignore information from previous frames). Since a neuron is

Fig. 4: Comparison between the three nonlinear functions , ,

and

h x() hpwl x()
ĥ x()

w’ij ...
TLj xrest

ΣTRj xrest

y’i
x’j

y’jLeak

thj−x

R&R

xthj

Fig. 5: Computational Block diagram of Event-Driven Neuron

x'j

∆x' x'j

w'i j
x'j

x’(t)j

TRj TRj

TLj

TRjTRj

TCj

xrest

xthj

thj−x

spike
output

1st spike
output

2nd

spike
output

3rd

spike
output

4th

time

Fig. 6: Illustration of a typical state evolution and spike production sequence for a spiking neuron with leak and refractory period

TCj

TCj

x'j
xthj±

xrest
TRj

h ·()

TCi TRi

gτj TCj TCi⁄=

gRj TRj TRi⁄=

5 (January 20, 2013 8:32 am)

interested in grouping lower level features from previous
neurons during a characteristic time , its state is subject
to a continuous leak that will drive its value towards with
a characteristic leak time constant. Fig. 6 shows a linear leak
for the neuron state, with a leak rate of value .

C. Signal Encoding in Frame-Free Event-Driven Systems.
Low-Rate Rate-Coding or Coincidence Processing

In traditional frame-driven neural computing systems,
neuron states and neuron output values are usually represented
with floating point precision. In some specialized accelerated
hardware implementations, 8-bit signed integer representation
is used [23]. Still, this representation presents a high dynamic
range, since the ratio between the full range and the smallest
step is 28 = 256. Note that in a recognition system, the output
of a neuron is not required to present such a high dynamic
range, since it only has to signal whether a feature is present or
not, or at the most provide a relative confidence which could be
provided with coarse steps. For example, in a face detection
application, we would not expect it to be critical whether the
neurons detecting the nose can use just five values [0, 0.25,
0.50, 0.75, 1.0] to give their confidence, or can use 256 steps in
the range [0, 1]. A higher dynamic range might be necessary to
represent the visual input. Commercial video, photography and
computer screens normally use 8-bit to represent luminance.
However, we will assume that our Event-driven visual sensors
include a preprocessing step (such as spatial or temporal
contrast) that significantly reduces the dynamic range of the
signals provided by their pixels. For example, a pixel in the
temporal contrast DVS retina we have used, normally provides
between 1 to 4 spikes when an edge crosses it.

In the following mathematical developments for mapping
from the Frame-driven domain to the Event-driven domain, we
will consider that an intensity value in the former is mapped to
a spike rate in the latter. Obviously, rate-coding is highly
inefficient for high dynamic ranges such as 8-bit, because a
neuron would need to transmit 256 spikes to represent a
maximally meaningful signal. Although the following
mathematical developments have no restrictions in terms of
dynamic range, we will always keep in mind that we will in
practice apply it to low dynamic range signals. We call this
“Low-Rate Rate-Coding”, and the maximum number of spikes
a neuron will transmit during its characteristic time constant
will be kept relatively low (for example, just a few spikes, or
even as low as one single spike). This maximum number of
spikes is . Time TRj is the minimum inter-spike time
needed to signal the presence of a feature, while TCj is the
characteristic time during which this feature might be present
during a transient. Thus, let us call “persistency” pj of neuron j
the maximum number of spikes that can be generated by a
transient feature during time TCj

(7)

Using all the above concepts and definitions, let us now
proceed to mathematically analyze the event-driven neuron and
propose a mapping formulation between frame-driven and
event-driven neuron parameters.

D. Mathematical Analysis of Event-Driven Neurons

With reference to Fig. 6, let us consider the situation where
neuron j becomes active as it receives a collection of properly
correlated spatio-temporal input spikes during a time TCj.
These represent the feature to which neuron j is sensitive. In
this case, the collection of spikes will produce a systematic
increase in neuron j’s activity during time TCj , resulting to
the generation of some output spikes, as illustrated in Fig. 6. If
the output spikes are produced with inter-spike intervals larger
than the refractory period TRj , then the number of spikes nj
produced by neuron j during time TCj satisfies3

(8)

where is the loss of neural activity due to leak. We
may safely assume that, during a systematic neural activity
build up that produces output events, leak does not drive the
activity down to the resting level , nor produces a change
of its sign. Under this assumption,

(9)

If the systematic activity build up is sufficiently fast, then the
neuron activates its refractory mode and will not allow
inter-spike intervals shorter than TRj , or equivalently

(10)

as is illustrated in Fig. 6 for the second and third spikes
produced by neuron j during time TCj. To take this into
account, the right hand side of eq. (8) needs to saturate to

. This can be expressed as

(11)

where saturates to ‘1’ and is as defined in eq. (4).
Using eqs. (7) and (9), eq. (11) becomes

(12)

where . Noting that will usually tend to be
much smaller than unity and that , we can
establish a parallelism between bottom eq. (2) and eq. (12) by
means of the following mapping

TCj x'j
xrest

LRj xthj TLj⁄=

TCj TRj⁄

pj TCj TRj⁄=

3. Here we are assuming a positive increase in the state (), reaching
the positive threshold and producing positive output events. The analysis is
equivalent for the generation of negative events.

x'j

xj' xrest>

nj

TCj

niwi j'
i RFj∈
∑

 
 
 

∆xLj–

xthjTCj
--=

∆xLj x'j

xrest

LRj

∆xLj

TCj

xthj

TLj
-------= =

nj

TCj

1
TRj
-------≤

1 TRj⁄

nj

TCj

1
TRj
-------hpwl

niwi j'
i RFj∈
∑

 
 
 

∆xLj–

xthj
--

TRj

TCj

 
 
 
 
 
 
 

1
TRj
-------≤=

hpwl ·()

nj

pj
---- hpwl

ni

pj

wij'

xthj

i RFj∈
∑

 
 
 

βj–
 
 
 

=

βj TRj TLj⁄= βj
nj pj⁄ 1 1,–[]∈

6 (January 20, 2013 8:32 am)

(13)

Note that the kernel wij ’ weights used for the event-driven
realization are simply scaled versions of those trained in the
frame-based version wij . Table 1 summarizes the different
event-driven neuron parameters discussed. As we will see in
the rest of the paper, when applying this mapping to ConvNets,
we will use the same mapping for all neurons in the same
ConvNet layer.

It is interesting to highlight that in a Frame-driven system,
neuron states can be interpreted as showing how much they
have changed during the frame time Tframe after being reset,
and this frame time can in turn be interpreted as the
“characteristic time” TC of all neurons in the system. When
mapping from a frame-driven description to an event-driven
one, all neurons could therefore be made to have identical
timing characteristics. However, as we will see later on,
neurons in different ConvNet layers will be allowed to have
different timing characteristics to optimize recognition
performance and speed.

 IV. EVENT-DRIVEN CONVNET FOR HUMAN
SILHOUETTE ORIENTATION RECOGNITION

As an illustrative example of scenes moving at speeds we
humans are used to, we trained a frame-driven version of a
ConvNet to detect the orientation of individual human walking
silhouettes. We used a 128x128 pixel DVS (dynamic vision
sensor) camera [5] to record event sequences when observing
individual people walking. Fig. 7 shows some (x,y) rotated
sample images obtained by collecting DVS recorded events
during4 80ms. White pixels represent positive events (light

changed from dark to bright during these 80ms), while black
pixels represent negative events (light changed from bright to
dark). One person walking generates about 10-20keps (kilo
events per second) with this DVS camera. From these
recordings, we generated a set of images by collecting events
during frame times of 30ms. From these reconstructed images,
we randomly assigned 80% for training and 20% for testing
learning performance. Each 128x128 pixel reconstructed
image was downsampled to 32x32 and rotated 0º, 90º, 180º or
270º.

The training set images were used to train the
Frame-driven 6 layer Feed Forward ConvNet shown in Fig. 8.
Table 2 summarizes the number of Feature Maps (FM) per
layer, FM size, kernels size, total number of kernels per layer,
total weights per layer, and how many weights are trainable.
The first layer C1 performs Gabor filtering at 3 orientations
and 2 scales, and its weights are not trained. S layers perform
subsampling and subsequent S layers perform feature
extraction and grouping. The last layer (C6) is not a feature
extraction layer, but a feature grouping layer. It performs a
simple linear combination of the outputs of the previous layer.
The top three neurons in layer C6 recognize a human silhouette
rotated 0º, +/-90º, or 180º. The bottom neuron (noise) is
activated when the system does not recognize a human
silhouette. Each output neuron fires both positive and negative
events, depending on whether it is certain the desired pattern is
present or it is certain it is not present.

The weights from the Frame-driven system were then
mapped to an event-driven version by using the
transformations in eqs. (13). Note that in a Feed forward
ConvNet, all neurons in the same layer operate with identical
spatial scales (kernel sizes and pixel space sizes). Here, we will

ŷj
nj

pj
---- , ŷi

ni

pi
----↔ ↔

wi j

wi j '

xthj

pi

pj
----↔

wi j '

xthj

gRj

gτ j
-------=

ĥ ·() hpwl ·()↔

Table 1. Summary of Event-Driven Neuron Parameters

xthj threshold

TCj characteristic time

TRj refractory time

LRj leak rate

pj = TCj /TRj persistency

gτj = TCj /TCi characteristic time gain

gRj = TRj /TRi = r ij refractory time gain

βj = TRj /TLj refractory-leak ratio

x̂j

Fig. 7: Example snapshot images obtained by histogramming events
during 80ms and rotating the (x,y) addresses.

4. Recordings were made by connecting the DVS camera via USB to a laptop
running jAER [25]. jAER is an open software for managing AER chips and
boards, recording events, playing them back, and performing a variety of
processing operations on them. Appendix 3 gives a brief overview of jAER.

Table 2. ConvNet Structure

C1 S2 C3 S4 C5 C6

Feature Maps (FM) 6 6 4 4 8 4

FM size 28x28 14x14 10x10 5x5 1x1 1x1

kernels size 10x10 - 5x5 - 5x5 1x1

kernels 6 - 24 - 32 32

weights 600 - 600 - 800 32

trainable weights 0 - 600 - 800 32

Fig. 8: ConvNet structure for human silhouette orientation detection

7 (January 20, 2013 8:32 am)

enforce that neurons in the same layer operate with identical
temporal scales too, so that each layer extracts spatio-temporal
features of the same scales. In Table 1 we would therefore
replace index j with the layer number index n, and index i with
the previous layer index n-1. We also chose in eqs.
(13), which enforces .

However, eqs. (5)-(7),(13) offer a high degree of freedom
to map parameters. We first followed the heuristic rationale
outlined below, but afterwards we ran simulated annealing
optimization routines to adjust the different parameters for
optimum performance.

The temporal patterns generated by the 128x128 DVS
camera when observing walking humans are such that a
minimum time of about 10-20ms (about 100-600 events) is
needed to reconstruct a human-like silhouette5. We therefore
set the “refractory time” of the last refractory layer (C5) as

. On the other hand, the persistency of a moving
silhouette is on the order of 100ms (collecting events for over
100ms fuzzyfies the silhouette). Thus . For layer
C1, short range edges can be observed with events separated
about 0.1ms in time. We therefore set . For layer
C3 we chose an intermediate value . For the
thresholds, we picked a value approximately equal to twice the
maximum kernel weight projecting to each layer. For the leak
rates we picked an approximate ratio of 2:1 between
consecutive layers, so that the last layer C6 has a leak rate of
1s-1. With these criteria, and considering that ,
the resulting list of parameters describing the event-driven
system are shown in Table 3.

Despite this heuristic method of obtaining a set of timing
parameters for the 6 layer event-driven ConvNet, we also used
optimization routines to optimize these parameters for best

recognition rate, as mentioned in the next Section and
described in detail in Appendix 5.

A. Results

For testing the event-driven system we used new
recordings from the 128x128 pixel DVS camera observing
people. These recordings where down-sampled to the 32x32
input space.

To run the simulations on these recordings we used the
Address-Event-Representation event-driven simulator AERST
(AER Simulation Tool) [24]. This simulator is briefly
described in Appendix 4. It uses AER processing blocks, each
with one or more AER inputs and one or more AER outputs.
AER outputs and inputs are connected through AER
point-to-point links. Therefore, the simulator can describe any
AER event-driven system through a netlist of AER blocks with
point-to-point AER links. A list of DVS recordings is provided
as stimulus. The simulator looks at all AER links and processes
the earliest unprocessed event. When an AER block processes
an input event, it may generate a new output event. If it does, it
will write a new unprocessed event on its output AER link. The
simulator continues until there are no unprocessed events left.
At this point, each AER link in the netlist contains a list of
time-stamped events. Each list represents the visual flow of
spatio-temporal features represented by that link. The resulting
visual event flow at each link can be seen with the jAER
viewer. Fig. 9 shows the netlist block diagram of the
Event-Driven ConvNet system simulated with AERST. It
contains 19 splitter modules, 20 AER convolution modules,
and 10 subsampling modules. In AERST the user can describe
modules by defining the operations to be performed for each

5. A retina with higher spatial resolution (256x256 or 512x512) multiplies the
number of events produced (by 4 and by 16, respectively) for the same
stimulus, but the events would still be produced during the same 10-20ms time
interval. Therefore, we conjecture that increasing spatial resolution reduces
recognition time, because the 100-600 events for first recognition would be
available earlier.

wi j wi j '=
gRn xthngτn=

TR5 10ms≈

TC5 100ms≈

TR1 0,1ms≈
TR3 0,5ms≈

gRn xthngτn=

Table 3: Parameters adjusted by heuristic rationale

layer TRn xthn
leak
rate

TLn TCn pn gRn gτn β

C1 0.1ms 0.6 10s-1 60ms 5ms 40 - - 0.0017

C3 0.5ms 1 5s-1 200ms 25ms 40 5 5 0.005

C5 10ms 5 2s-1 2.5s 100ms 10 20 4 0.004

C6 - 1.5 1s-1 1.5s - - - - -

Splitter

kernels

Conv
2 5x5

Splitter

kernels

Conv
2 5x5

Splitter

kernels

Conv
1 8x1

kernels

Conv
1 8x1

kernels

Conv
1 8x1

kernels

Conv
1 8x1

Input
32x32

6 28x28
Layer C1

4 10x10
Layer C3

8 1x1
Layer C5

4 1x1
Layer C6

6 14x14
Layer S2

4 5x5
Layer S4

kernels

Conv
6 5x5 subs

Splitter

kernels

Conv
6 5x5 subs

Splitter

kernels

Conv
6 5x5 subs

Splitter

subs

subs

subs

subs

subs

Conv

kernel
1 10x10

Noise

Splitter

Splitter

Conv

kernel
1 10x10

Splitter

Conv

kernel
1 10x10

Splitter

Conv

kernel
1 10x10

Splitter

Conv

kernel
1 10x10

Splitter
Splitter

Conv

kernel
1 10x10

kernels

Conv
6 5x5

subs

subs

Splitter

kernels

Conv
2 5x5

Splitter

kernels

Conv
2 5x5

Splitter

kernels

Conv
2 5x5

Splitter

kernels

Conv
2 5x5

Splitter

kernels

Conv
2 5x5

Splitter
kernels

Conv
2 5x5

Fig. 9: Schematic block diagram used in simulator AERST

8 (January 20, 2013 8:32 am)

incoming event and include non-ideal effects such as
characteristic delays, noise and jitter, limited precision, etc. We
described the modules using the performance characteristics of
already manufactured AER hardware modules; specifically,
available splitter and mapper modules implemented on FPGA
boards [6],[9], and dedicated AER convolution chips with
programmable kernels [8],[10]. A splitter module replicates
each input event received at each of its output ports with a
delay on the order of 20-100ns. Subsampling modules are
implemented using mappers. They transform event
coordinates. In this particular case, the mappers are
programmed to replace each input event coordinate (x,y) with

, where operand is “round to the lower
integer”. This way, all events coming from a 2x2 square of
pixels are remapped to a single pixel. Convolution modules
describe AER convolution chip operations with programmable
kernels. Convolutions are computed and updated event by
event, as described in Appendix 2.

Using the parameters in Table 3 we tested the performance
of the Event-driven ConvNet in Fig. 9 when fed with event
streams of DVS captured walking human silhouettes rotated 0º,
90º, 180º, and 270º. Each input stream segment consists of 2k
events, and their (x,y) coordinates are consecutively rotated 0º,
90º or 270º, and 180º. Fig. 10 shows input events as small
black dots. Output events are marked either with circles
(“upright” or 0º), crosses (“horizontal”, or 90º and 270º), or
stars (“upside down” or 180º). Fig. 10(b) shows a zoom out for
the first transition from horizontal to upside down, where the
recognition delay is 17ms. Average recognition delay was
41ms, and the fastest was 8.41ms. The overall recognition
success rate SR for this stream was 96.5%, computed as the
average of the success rate per category SRi. For each category
i, its success rate is computed as

(14)

where () is the number positive (negative) output events
for category i when input stimulus corresponds to category i,
and () are the positive (negative) output events for
the other categories. In a perfect recognition situation
and .

The parameters in Table 3 were assigned by intuition.
Appendix 5 describes the results obtained when using a
simulated annealing optimization procedure to optimize these
parameters. The resulting optimized parameters are not too
different from the ones obtained by intuition, and the
recognition rate varied within the range 97.28% to 99.61%.

In order to compare recognition performance with that of a
frame-driven ConvNet realization, we used the same sequence
of events and built sequences of frames using different frame
reconstruction times. Each frame was fed to the frame-driven
ConvNet. Table 4 shows, for each frame reconstruction time,
the total number of non-empty frames (some frames were
empty because the sensor was silent during these times), and
the percent of correctly classified frames. As can be seen, the
success rate changes with frame reconstruction time, and
seems to have an optimum in the range 50-75ms frame time.

V. EVENT-DRIVEN CONVNET FOR POKER CARD
SYMBOL RECOGNITION

In this Section we illustrate the method with a second
example, more oriented towards high speed sensing and
recognition. Fig. 11(a) shows an individual browsing a poker
card deck. A card deck can be fully browsed in less than one
second. When recording such a scene with a DVS and playing
the event flow back with jAER one can freely adjust the frame
reconstruction time and frame play back speed to observe the
scene at very low speed. Fig. 11(b) illustrates a reconstructed
frame when setting frame time to 5ms. The DVS had 128x128
pixels. A poker symbol fits well into a 32x32 pixel patch. We
made several high speed browsing recordings, built frames of

x 2⁄ y 2⁄,() z

Fig. 10: Recognition performance of the event-driven ConvNet in Fig. 8.
Small black dots correspond to input events, circles are output events for
‘upright’ orientation (0º), crosses for ‘horizontal’ orientation (90º, 270º),
and stars for ‘upside down’ (180º). (a) 7 sec recording of 20 consecutive
orientations, (b) zoom out of 40ms showing a recognition delay of 17ms.

(a) (b)

up

horizontal

up side down

17ms

SRi
1
2

pi
+

pi
+

pi
 –+

pj i≠

 –

pj i≠
+

pj i≠
 –+

--------------------------+
 
 
 

=

pi
+ pi

 –

pj i≠
+ pj i≠

 –

pi
 – 0=

pj i≠
+ 0=

Frame
Time

Total
non-empty

Frames

Success
Rate

125ms 45 95.6%

100ms 63 96.8%

75ms 84 97.6%
50ms 133 97.7%
30ms 225 96.4%
20ms 339 96.2%
10ms 674 93.5%

Table 4. Performance of Frame-Driven Realization of the Human
Silhouette Orientation Detection ConvNet

Fig. 11: Fast browsing of a Poker Card Deck. (a) Picture taken with a
Frame-Driven Camera. (b) jAER image obtained by collecting events
during 5ms.

(a) (b)

9 (January 20, 2013 8:32 am)

2ms time, and cropped many versions of poker symbols of size
32x32 pixels. We selected a set of best looking frames to build
a database of training and test patterns. The topological
structure of the Frame-driven ConvNet used for recognizing
card symbols was identical to the one described in the previous
Section.

The trained Frame-driven ConvNet was mapped to an
Event-Driven version, by using the same sets of learned kernel
weights and adjusting the timing parameters to the higher
speed situation. To provide a proper 32x32 pixel input scene
we used an event-driven clustering-tracking algorithm [26] to
track card symbols from the original 128x128 DVS recordings,
since the instant they appeared until they disappeared. Such
time interval ranged typically from about 10-30ms per symbol
and the 32x32 crop could contain on the order of 3k to 6k
events. We sequenced several of these tracking crops
containing all symbols and used the sequences as inputs to the
Event-driven ConvNet. We then tested the Event-driven
ConvNet with the Event-driven AER simulator used in Section
IV and used the same Matlab simulated annealing routines to
optimize timing parameters. Table 2 in Appendix 5 shows the
optimized parameters and performance results of several
optimizations after running simulated annealing. The
recognition success rate, measured by eq. (14), varied between
90.1% and 91.6%.

In order to compare the recognition performance with that
of a Frame-driven ConvNet realization, we used the same input
event recordings to generate frames with different frame times,
from 1ms to 10ms. Then we exposed the originally trained
Frame-driven ConvNet to these new frames and obtained the
recognition rates shown in Table 5. As can be seen, there is an
optimum frame time between 2 and 3ms.

Fig. 12 shows an example situation of the output
recognition events of the event-driven ConvNet while a
sequence of 20 symbol sweeps was presented. The continuous
line indicates which symbol was being swept at the input, and
the output events are represented by different markers for each
category: circles for “club” symbol, crosses for “diamond”
symbol, inverted triangles for “heart” symbols, and non
inverted triangles for “spade” symbols. Fig. 13 shows the
details of the 14ms sequence of the 4th “heart” symbol input in
Fig. 12. Fig. 13 contains 14 columns. Each corresponds to
building frames using the events that appeared during one mili
second at some of the ConvNet nodes. Background gray color

represents zero events during this mili second, brighter gray
level means a net positive number of events per pixel, while
darker gray level means a net negative number of events per
pixel. The numbers on the top left of each reconstructed frame
indicate the total number of events present for all pixels in that
Feature Map during that mili second. Each row in Fig. 13
corresponds to one ConvNet node or Feature Map. The top row
corresponds to the 32x32 pixel input crop from the DVS retina.
The next 6 rows correspond to the 6 subsampled Feature Maps
of the first convolution layer, namely layer S2 14x14 pixel
outputs. The next four rows correspond to the 5x5 Feature Map
outputs of layer S4. The next 8 rows show the single pixel
outputs of layer C5, and the last four rows correspond to the
four output pixels of layer 6, each indicating one of the four
poker symbol categories. We can see that at the output layer C6
nodes there is a sustained activity for the third row (which
corresponds to category “heart”) between mili seconds 6 and
12, which is when the input symbol appeared more clearly.
during these 6ms there were 4 positive output events for this
category, which we artificially have binned into 1ms slots.

To better illustrate the timing capabilities of multi-layer
event-driven processing, we selected a 1ms cut of the input
stimulus sequence in Fig. 13. We ran again the simulation for
this 1ms input flash and obtained the results shown in Fig. 14.
There are five time diagrams in Fig. 14. The top diagram
represents a (y,time) projection of the DVS retina events.
Positive events are represented by circles and negative events
by crosses. On top of each diagram we indicate the total
number of events in the diagram. The second diagram
corresponds to the events in Feature Map 2 of Layer S2. The
next diagram represents the events for Feature Map 3 of Layer
S4. The next diagram shows the events of all 8 neurons in
Layer C5, and the bottom diagram shows the events of all
neurons in the output Layer C6. We can see that the neuron of
category “heart” in Layer C6 provided one positive output
event. Fig. 14 illustrates nicely the “pseudo-simultaneity”
property or coincidence processing of event-driven multi-layer
systems. As soon as one layer provides enough events
representing a given feature, the next layer Feature Map tuned
to this feature fires events. This property is kept from layer to
layer, so that output recognition can be achieved while the
input burst is still happening.

In order to characterize the internal representations and
dynamics of this event driven network, we show in Appendix 7
reverse correlation reconstructions for the last layers with
down to 0.1ms time windows.

VI. DISCUSSION

Event-driven sensing and processing can be highly
efficient computationally. As can be seen from the previous

Frame
Time

Total
non-empty

Frames

Success
Rate

10ms 30 63.3%

7ms 45 77.8%

5ms 54 85.2%
4ms 62 91.9%
3ms 75 94.7%
2ms 84 95.2%
1ms 95 92.6%

Table 5. Performance of Frame-Driven Realization of the Poker Card
Symbol Recognition ConvNet

Fig. 12: Recognition performance of the Poker Card Symbol Recognition
ConvNet.

10 (January 20, 2013 8:32 am)

results (for example, Fig. 14), recognition occurs while the
sensor is providing events. This contrasts strongly with the
conventional Frame-driven approach, where the sensor first
needs to detect and transmit one image. In commercial video,
frame rate is Tframe = 30-40ms. Assuming instantaneous image
transmission (from sensor to processor) and instantaneous
processing and recognition, the output would therefore be
available after Tframe of sensor reset (the sensor is reset after
sending out a full image). In practice, real time image
processors are those capable of delivering an output at frame
rate; that is, after a time Tframe of the sensor making an image
available, or, equivalently, after 2xTframe of sensor reset.

Another observation is that in a Frame-driven multi-
convolution system like the one shown in Fig. 9, the operations
in layer n cannot start until operations in layer n-1 have

concluded. If the system includes feedback loops, then the
computations have to be iterated several cycles until
convergence, for each frame. However, in the Event-driven
approach this is not the case. A DVS camera (or any other
Event-driven sensor) produces output events while “reality” is
actually moving (with micro seconds delay per event). These
events are then processed event by event (with delays of
around 100ns). This effectively makes input and output event
flows simultaneous (we have called this pseudo-simultaneity or
coincidence property throughout the paper), not only between
the input and output of a single event processor but for the full
cascade of processors, as in Fig. 9. Furthermore, if the system
includes feedback loops, this coincidence property is retained.
Recognition delay is therefore not determined by the number
of layers and processing modules per layer, but by the
statistical distribution of meaningful input events generated by

Fig. 13: Image reconstruction for event flows at different ConvNet stages during a 14ms heart symbol card browsing. Images in this figure are built by
collecting events during 1ms. Event flows are continuous throughout the full 14ms shown, but are artificially grouped in 1ms bins.Time advances from
left to right in steps of 1ms. Images in the same column use events collected during the same ms. Horizontal rows correspond to one single feature map
output. Top row is a 32x32 pixel crop of the DVS output tracking a 14ms heart symbol sweep through the screen. Next 6 rows correspond to Layer S2
subsampled 14x14 pixel Feature Maps. Next 4 rows correspond to Layer S4 subsampled 5x5 pixel Feature Maps. Next 8 rows correspond to Layer C5
single pixel features. Bottom 4 rows correspond to the Layer 6 outputs corresponding to the four recognition symbol.

11 (January 20, 2013 8:32 am)

the sensor. Improving the sensor event generation mechanism
would thus in principle improve the overall recognition
performance and speed of the full system (as long as it does not
saturate). For example, improving the contrast sensitivity of a
DVS would increase the number of events generated by the
pixels for the same stimulus. Also, increasing spatial resolution
would multiply the number of pixels producing output events.
This way, more events would be generated during the same
time, and the “shapes critical for recognition” would become
available earlier.

System complexity is increased in a ConvNet by adding
more modules and layers. This makes it possible to increase
both the “shape dictionary” at intermediate layers and the
“object dictionary” at the output layers. However, in an
Event-driven system, increasing the number of modules per
layer would not degrade speed response, as long as it does not
saturate the communication bandwidth of the inter-module
links.

This is one issue to be careful with in Event-driven
systems. Event traffic saturation is determined by the
communication and processing bandwidth of the different AER

links and modules, respectively. Each channel in Fig. 9 has a
limited maximum event rate communication bandwidth.
Similarly, each module also has a maximum event processing
rate. Module (filter) parameters therefore have to be set in such
a way that maximum communication and processing event rate
is not reached. Normally, the event rate is higher for the first
stages (sensor and C1), and decreases significantly for later
stages. At least this is the case for the feed forward ConvNets
we have studied.

One very attractive feature of event-driven hardware is its
ease of scalability. Increasing hardware complexity means
connecting more modules. For example, with present day high
end ASIC technology it is feasible to place several large size
(64x64 or 128x128) ConvModules (about 10) on a single chip,
together with companion routers (to program connectivity) and
mappers. An array of 10x10 of these chips can be put on a
single PCB, hosting on the order of 1k ConvModules. And
then, many of these PCBs could be assembled hierarchically.
Several research groups are pursuing this type of hardware
assembly goals [27],[28],[30],[45]. In Appendix 6 we compare
in more detail frame vs. event-driven approaches focusing on
hardware aspects.

Regarding the sensor, we have focused our discussions on
the DVS camera. However, there are many reported
Event-driven sensors for vision and audition. Just to mention a
few, there are also plain luminance sensors [31], time-to-spike
coded sensors [32], foveated sensors [33], spatial contrast
sensors [34]-[35], combined spatio-temporal contrast sensors
[36]-[37], and velocity sensors [38]-[39].

One of the limitations of Event-driven hardware compared
to Frame-driven equipment is that hardware time-multiplexing
is not possible. For example, present day hardware
implementations of Frame-driven ConvNets [40] extensively
exploit hardware multiplexing by fetching intermediate data in
and out between processing hardware and memory. This way,
arbitrarily large systems can be implemented by trading off
speed. This is not possible in Event-driven hardware, as events
need to “flow” and each module has to hold its instantaneous
state.

Another disadvantage of Event-driven systems, at least at
present, is the lack of efficient, fast training.
Spike-Time-Dependent-Plasticity (STDP) [41] seems to be a
promising unsupervised learning scheme, but it is slow and
requires learning synapses with special properties [42]. Other
research efforts are dedicated to algorithmic solutions for
supervised STDP type learning [19]-[21]. However at the
moment, this field is still quite incipient.

Nevertheless, Event-driven sensing and processing has
many attractive features, and research in this direction is
certainly worth pursuing.

 VII. CONCLUSIONS

A formal method for mapping parameters from a
Frame-driven (vision) neural system to an Event-driven system
has been presented. Given the extra timing considerations in
Frame-free Event-driven systems, extra degrees of freedom
become available. This mapping was illustrated by applying it

Fig. 14: Events vs time for a simulation that uses as stimulus a 1ms
“heart” symbol cut of that in Fig. 13. Positive events are drawn with
circles, while negative events use crosses. (a) 1ms event flash from DVS
32x32 crop. (b) Events at 2nd Feature Map FM2 of Layer S2. (c) Events at
FM3 of Layer S4. (d) Events at all 8 single pixel FMs of Layer C5. (e)
Events at all 4 outputs of Layer C6. Layer C6 produces only 3 events
during this 1ms “heart” flash. From these 3 events, only one is positive
corresponding to the correct “heart” category.

(a)

(b)

(c)

(d)

(e)

12 (January 20, 2013 8:32 am)

to example ConvNet systems for recognizing orientations of
rotating human silhouettes and fast poker card symbols
recorded with real DVS retina chips. The recordings were fed
to a hierarchical feed forward spike-driven ConvNet which
included 20 Event-driven Convolution modules. The systems
were simulated with a dedicated event-driven simulator. The
results confirm the high speed response capability of
Event-driven sensing and processing systems, as recognition is
achieved while the sensor is delivering its output.

 VIII. ACKNOWLEDGEMENTS

This work was supported by european CHIST-ERA grant
PNEUMA funded by Spanish MICINN (PRI-PIMCHI-2011-
0768), Spanish grant (with support from the European
Regional Development Fund) TEC2009-10639-C04-01
(VULCANO) and Andalucian grant TIC609 (NANONEURO).

 IX. REFERENCES

[1] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128x128 120dB 30mW
asynchronous vision sensor that responds to relative intensity change,”
IEEE Int. Solid-State Circ. Conf. (ISSCC) 2006.

[2] P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128x128 120 dB 15µs
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-State
Circuits, vol. 43, No. 2, pp. 566-576, February 2008.

[3] J. Kramer, “An integrated optical transient sensor,” IEEE Trans. on Circ.
and Syst., Part II, vol. 49, no. 9, pp. 612-628, Sep. 2002.

[4] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143dB dynamic
range asynchronous address-event PWM dynamic image sensor with
lossless pixel.level video-compression,” in IEEE Int. Solid-State Circ.
Conf. (ISSCC) Dig. of Tech. Papers, pp. 400-401, Feb. 2010.

[5] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Barranco,
“A 3.6µs Latency Asynchronous Frame-Free Event-Driven Dynamic-
Vision-Sensor,” IEEE J. Solid-State Circuits, vol. 46, No. 6, pp. 1443-1455,
June 2011.

[6] F. Gomez-Rodríguez, R.Paz-Vicente, et al., “AER tools for
communications and debugging,” Proc. of the IEEE Int. Symp. on Circ. and
Syst. (ISCAS 2006), pp. 3253-3256, May 2006.

[7] E. Chicca, A. M. Whatley, V. Dante, P. Lichtsteiner, T. Delbrück, P. Del
Giudice, R. J. Douglas, and G. Indiveri, “A multi-chip pulse-based
neuromorphic infrastructure and its application to a model of orientation
selectivity,” IEEE Trans. Circ. and Syst. I,Regular Papers, vol. 5, no. 54,
pp. 981-993, 2007.

[8] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez, and
B. Linares-Barranco, "A neuromorphic cortical-layer microchip for
spike-based event processing vision systems," IEEE Trans. Circuits and
Systems, Part-I: Regular Papers, vol. 53, No. 12, pp. 2548-2566,
December 2006.

[9] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R.
Paz-Vicente, F. Gómez-Rodríguez, L. Camuñas-Mesa, R. Berner, M.
Rivas, T. Delbrück, S. C. Liu, R. Douglas, P. Häfliger, G. Jiménez-Moreno,
A. Civit, T. Serrano-Gotarredona, A. Acosta-Jiménez, B.
Linares-Barranco, "CAVIAR: A 45k-Neuron, 5M-Synapse, 12G-connects/
sec AER Hardware Sensory-Processing- Learning-Actuating System for
High Speed Visual Object Recognition and Tracking," IEEE Trans. on
Neural Networks, vol. 20, No. 9, pp. 1417-1438, September 2009.

[10]L. Camuñas-Mesa, A. Acosta-Jiménez, C. Zamarreño-Ramos, T.
Serrano-Gotarredona, and B. Linares-Barranco, "A 32x32 Pixel
Convolution Processor Chip for Address Event Vision Sensors with 155ns
Event Latency and 20Meps Throughput," IEEE Trans. Circ. and Syst., vol.
58, No. 4, pp. 777-790, April 2011.

[11]L. Camuñas-Mesa, C. Zamarreño-Ramos, A. Linares-Barranco, A.
Acosta-Jiménez, T. Serrano-Gotarredona, and B. Linares-Barranco, "An
Event-Driven Multi-Kernel Convolution Processor Module for
Event-Driven Vision Sensors," IEEE J. of Solid-State Circuits, vol. 47, No.
2, pp. 504-517, Feb. 2012.

[12]Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip
code recognition,” Neural Computation, vol. 1, No. 4, pp. 541.551, 1989.

[13]K. Chellapilla, M. Shilman, and P. Simard, “Optimally combining a
cascade of classifiers,” in Proc. of Document Recognition and Retrieval 13,

Electronic Imaging, 6067, 2006.
[14]R. Vaillant, C. Monrocq, and Y. LeCun, “Original approach for the

localisation of objects in images,” IEE Proc on Vision, Image, and Signal
Processing, vol. 141, no. 4, pp. 245.250, August 1994.

[15]M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face detection and pose
estimation with energy-based models,” Journal of Machine Learning
Research, vol. 8, pp. 1197.1215, May 2007.

[16]C. Garcia and M. Delakis, “Convolutional face finder: A neural
architecture for fast and robust face detection,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol. 26, No. 11, pp. 1408.1423, 2004.

[17]F. Nasse, C. Thurau, and G. A. Fink, “Face detection using gpu based
convolutional neural networks,” Lecture Notes in Computer Science,
Computer Analysis of Images and Patterns, vol. 5702/2009, pp. 83.90,
2009.

[18]A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco, H.
Adam, H. Neven, and L. Vincent, “Large-scale Privacy Protection in
Google Street View,” in Int. Conf. on Comp. Vision (ICCV.09), 2009.

[19]S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in
temporally encoded networks of spiking neurons,” Neurocomputing, 48,
pp. 17-38, 2003.

[20]O. Booij, et al., “A gradient descent rule for spiking neurons emitting
multiple spikes,” Information Processing Letters, 95(6), pp. 552-558, 2005.

[21]F. Ponulak and A. Kasinski, “Supervised Learning in Spiking Neural
Networks with ReSuMe: Sequence Learning, Classification, and Spike
Shifting,” Neural Computation, Vol. 22, No. 2, pp. 467-510, February
2010.

[22]Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proceedings of the IEEE, Vol. 86, No.
11, pp. 2278-2324, Nov. 1998.

[23]C. Farabet, B. Martini, P. Akserod, S. Talay, Y. LeCun, and E. Culurciello,
“Hardware Accelerated Convolutional Neural Networks for Synthetic
Vision Systems,” Proc. of the IEEE Int. Symp. Circ. and Systems (ISCAS),
pp. 257-260, 2010.

[24]http://aerst.wiki.sourceforge.net, in preparation.

[25]http://jaer.wiki.sourceforge.net

[26]T. Delbrück and P. Lichtsteiner, “Fast sensory motor control based on
event-based hybrid neuromorphic-procedural system,” Proc. of the IEEE
Int. Symp. Circ. and Systems (ISCAS), pp. 845 - 848, 2007.

[27]S. Joshi, S. Deiss, M. Arnold, J. Park, T. Yu, G. Cauwenberghs, “Scalable
Event Routing in Hierarchical Neural Array Architecture with Global
Synaptic Connectivity,” Int. Workshop on Cellular Nanoscale Networks
and their Applications (CNNA), Feb. 2010.

[28]L. Camuñas-Mesa, J. A. Pérez-Carrasco, C. Zamarreño-Ramos, T.
Serrano-Gotarredona, and B. Linares-Barranco, “On Scalable Spiking
ConvNet Hardware for Cortex-Like Visual Sensory Processing Systems,”
Proc. of the IEEE Int. Symp. on Circ. and Syst. (ISCAS 2010), pp. 249-252,
June 2010.

[29]A. Linares-Barranco, R. Paz-Vicente, F. Gómez-Rodríguez, A. Jiménez, M.
Rivas, G. Jiménez, and A. Civit, “On the AER convolution processors for
FPGA,” Proc. of the IEEE Int. Symp. on Circ. and Syst. (ISCAS 2010), pp.
4237-4240, June 2010.

[30]R. Silver, K. Boahen, S. Grillner, N. Kopell and K. L. Olsen, “Neurotech
for neuroscience: Unifying concepts, organizing principles, and emerging
tools,” Journal of Neuroscience, vol. 27, no. 44, pp. 11807-819, October
2007.

[31]E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomorphic
digital image sensor,” IEEE J. of Solid-State Circ., vol. 38, pp. 281-294,
2003.

[32]S. Chen, and A. Bermak, “Arbitrated time-to-first spike CMOS image
sensor with on-chip histogram equalization,” IEEE Trans. on VLSI
Systems, vol. 15, no. 3, 346 - 357. Mar. 2007.

[33]M. Azadmehr, H. Abrahamsen, and P. Hafliger, “A foveated AER imager
chip,” Proc. of the IEEE Int. Symp. on Circ. and Syst. (ISCAS), vol. 3, pp.
2751-2754, 2005.

[34]J.Costas-Santos, T. Serrano-Gotarredona, R. Serrano-Gotarredona and B.
Linares-Barranco, “A spatial contrast retina with on-chip calibration for
neuromorphic spike-based AER vision systems,” IEEE Transactions on
Circuits and Systems, Part I, vol. 54, no. 7, pp. 1444-58, 2007.

[35]J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Barranco,
“A five-decade dynamic range ambient-light-independent calibrated
signed-spatial-contrast AER retina with 0.1ms latency and optional
time-to-first-spike mode,” IEEE Trans. on Circ. and Syst. Part I, vol. 57,
no. 10, pp. 2632-2643, Oct. 2010.

[36]K. A. Zaghloul, and K. Boahen, “Optic nerve signals in a neuromorphic
chip I: outer and inner retina models,” IEEE Trans. on Biom. Eng., vol. 51,
no. 4, pp. 657-666, Apr. 2004.

[37]K. A. Zaghloul, and K. Boahen, “Optic nerve signals in a neuromorphic
chip II: testing and results,” IEEE Trans. on Biom. Eng., vol. 51, no. 4, pp.

13 (January 20, 2013 8:32 am)

667-675, Apr. 2004.
[38]J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-based analog VLSI

velocity sensors,” IEEE Trans. Circuits Syst. II, vol. 44, pp. 86-101, 1997.
[39]C. M. Higgins and S. A. Shams, “A biologically inspired modular VLSI

system for visual measurement of self-motion,” IEEE Sensors Journal, vol.
2, no. 6, pp. 508-528, Dec. 2002.

[40]C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello,
“Hardware Accelerated Convolutional Neural Networks for Synthetic
Vision Systems,” Proc. IEEE Int. Symp. Circ. and Syst. (ISCAS10), pp.
257-260, 2010.

[41]T. Masquelier, R. Guyonneau, and S. Thorpe, “Competitive STDP-Based
Spike Pattern Learning,” Neural Comp. vol. 21, pp. 1259-1276, 2009.

[42]G. Indiveri, “Neuromorphic bistable VLSI synapses with spike-timing-
dependent plasticity,” Advances in Neural Information Processing Systems
(NIPS), vol. 15, pp. 1091-1098, 2002.

[43]C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello and Y. LeCun,
“NeuFlow: A Runtime-Reconfigurable Dataflow Processor for Vision,”
Proc. of Embedded Computer Vision Workshop (ECVW'11), 2011.

[44]C. Farabet, Y. LeCun, and E. Culurciello, “NeuFlow: A Runtime
Reconfigurable Dataflow Architecture for Vision,” in Snowbird Learning
Workshop, Cliff Lodge, April 2012.

[45]C. Zamarreño-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Multi-Casting Mesh AER: A Scalable Assembly
Approach for Reconfigurable Neuromorphic Structured AER Systems.
Application to ConvNets,” IEEE Trans. on Biomedical Circuits and
Systems, in Press.

[46]C. Farabet, R. Paz, J. A. Pérez-Carrasco, C. Zamarreño-Ramos, A.
Linares-Barranco, Y. LeCun, E. Culurciello, T. Serrano-Gotarredona, and
B. Linares-Barranco, “Comparison between Frame-Constraint
Fix-Pixel-Value and Frame-Free Spiking Dynamic-Pixel ConvNets for
Visual Processing,” Frontiers in Neuromorphic Engineering, vol. 6, March
2012, doi: 10.3389/fnins.2012.00032.

[47]J. Poulton, R. Palmer, A. M. Fuller, T. Greer, J. Eyles, W. J. Dally and M.
Horowitz, “A 14-mW 6.25-Gb/s Transceiver in 90-nm CMOS,” IEEE J.
Solid-State Circ., vol. 42, No. 12, pp. 2745-2757, Dec. 2007.

[48]C. Zamarreño-Ramos, T. Serrano-Gotarredona, and B. Linares-Barranco,
"An Instant-Startup Jitter-Tolerant Manchester-Encoding Serializer/
Deserializar Scheme for Event-Driven Bit-Serial LVDS Inter-Chip AER
Links," IEEE Trans. Circ. and Syst. Part-I, vol. 58, No. 11, pp. 2647-2660,
Nov. 2011.

[49]C. Zamarreño-Ramos, T. Serrano-Gotarredona, and B. Linares-Barranco,
"A 0.35um Sub-ns Wake-up Time ON-OFF Switchable LVDS
Driver-Receiver Chip I/O Pad Pair for Rate-Dependent Power Saving in
AER Bit-Serial Links," IEEE Trans. on Biomedical Circuits and Systems,
in Press.

[50]W. Gerstner and W. Kistler, Spiking Neuron Models. Single Neurons,
Populations, Plasticity, Cambridge University Press, 2002.

José Antonio Pérez-Carrasco received the degree
in telecommunication engineering in 2004, and his
PhD degree in 2011 from the University of Seville,
Sevilla, Spain. He started collaborating with the
Biomedical Image Processing Group (BIP) in 2003,
when he was working on his B.Sc. Thesis under the
supervision of the BIP group leaders Dr. Serrano
and Dr. Acha. After working for some companies,
in 2005 Dr. Pérez-Carrasco received two 1-year
research grants to implement vision processing
algorithms within the Sevilla Microelectronics
Institute in collaboration with the BIP group at the

University of Seville. In 2007 he received a PhD grant and he obtained his
doctoral degree in March 2011. He is currently an Assistance Professor at the
Dept. of Signal Theory at the University of Seville. His research interests
include visual perception, real-time processing, pattern recognition, image
processing and its medical applications.

Bo Zhao received the BS and MS degrees in
Electronic Engineering from Beijing Jiaotong
University, Beijing, China, in 2007 and 2009,
respectively. He is currently working toward the
PhD degree in the School of Electrical and
Electronic Engineering, Nanyang Technological
University, Singapore. His research interests are in
design and VLSI implementation of bio-inspired
vision processing algorithms. He is a student
member of the IEEE.

Carmen Serrano received the M.S. degree in
Telecommunication Engineering from the
University of Seville, Spain, in 1996 and the
Ph.D. degree in January 2002. In 1996, she joined
the Signal Processing and Communication
Department at the same university, where she is
currently Tenured Professor. Her research
interests concern image processing and, in
particular, color image segmentation,
classification and compression, mainly with
biomedical applications.

Begoña Acha received the Ph.D. degree in
Telecommunication Engineering in July 2002. She
has been working since 1996 in the Signal
Processing and Communications Department of the
University of Seville, where she is currently
Tenured Professor. Her current research activities
include works in the field of color image processing
and its medical applications.

Teresa Serrano-Gotarredona received the B.S.
degree in electronic physics and the Ph.D. degree
in VLSI neural categorizers from the University of
Sevilla, Sevilla, Spain, in 1992, and 1996,
respectively, and the M.S. degree in electrical and
computer engineering from The Johns Hopkins
University, Baltimore, MD, in 1997. She was an
Assistant Professor in the Electronics and
Electromagnetism Department, University of
Sevilla from September 1998 until September

2000. Since September 2000, she has been a Tenured Scientist at the National
Microelectronics Center, (IMSE-CNM-CSIC), Sevilla, Spain, and in 2008 she
was promoted to Tenured Researcher.

Her research interests include analog circuit design of linear and
nonlinear circuits, VLSI neural-based pattern recognition systems, VLSI
implementations of neural computing and sensory systems, transistor
parameters mismatch characterization, address-event-representation VLSI, RF
circuit design, nanoscale memristor-type AER, and real-time vision processing
chips. She is coauthor of the book Adaptive Resonance Theory Microchips
(Norwell, MA: Kluwer, 1998).

Dr. Serrano-Gotarredona was corecipient of the 1997 IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper
Award for the paper “A Real-Time Clustering Microchip Neural Engine.” She
was also corecipient of the 2000 IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART I: REGULAR PAPERS Darlington Award for the paper “A General
Translinear Principle for Subthreshold MOS Transistors.” She is an officer of
the IEEE CAS Sensory Systems Technical Committee. She is Associte Editor
of the IEEE Transactions on Circuits and Systems-Part I, Regular Papers, since
December 2011, and Associate Editor for PLoS ONE since 2008.

Shouchun Cheng Shoushun Chen received his
B.S. degree from Peking University, M.E. degree
from Chinese Academy of Sciences and Ph.D
degree from Hong Kong University of Science
and Technology in 2000, 2003 and 2007,
respectively. He held a post-doctoral research
fellowship in the Department
of Electronic & Computer Engineering, Hong
Kong University of Science and Technology for
one year after graduation. From February 2008 to
May 2009 he was a post-doctoral research
associate within the Department of Electrical
Engineering, Yale University. In July 2009, he

joined Nanyang Technological University as an assistant professor.
Dr. Chen is a member of IEEE. He serves as a technical committee

member of Sensory Systems, IEEE Circuits and Systems Society (CASS);
Associate Editor of IEEE Sensors Journal; Associate Editor of Journal of Low
Power Electronics and Applications; Program Director (Smart Sensors) of
VIRTUS, IC Design Centre of Excellence; Regular reviewer for a number of
international conferences and journals such as TVLSI, TCAS-I/II, TBioCAS,
TPAMI, Sensors, TCSVT, etc.

14 (January 20, 2013 8:32 am)

Bernabé Linares-Barranco (M’94–F’10)
received the B.S. degree in electronic physics, the
M.S. degree in microelectronics, and the Ph.D.
degree in high-frequency OTA-C oscillator design
from the University of Sevilla, Sevilla, Spain, in
1986, 1987, and 1990, respectively, and the Ph.D.
degree in analog neural network design from Texas
A&M, College Station, in 1991. Since September
1991, he has been a Tenured Scientist at the Sevilla
Microelectronics Institute (IMSE), which is one of
the institutes of the National Microelectronics
Center (CNM) of the Spanish Research Council

(CSIC) of Spain. On January 2003, he was promoted to Tenured Researcher
and, in January 2004, to Full Professor of Research. Since March 2004, he has
also been a part-time Professor with the University of Sevilla. From September
1996 to August 1997, he was on sabbatical stay at the Department of Electrical
and Computer Engineering, Johns Hopkins University, Baltimore, MD, as a
Postdoctoral Fellow. During Spring 2002, he was a Visiting Associate
Professor at the Electrical Engineering Department, Texas A&M University.

He is coauthor of the book Adaptive Resonance Theory Microchips
(Norwell, MA: Kluwer, 1998). He was also the coordinator of the EU-funded
CAVIAR project. He has been involved with circuit design for
telecommunication circuits, VLSI emulators of biological neurons, VLSI
neural-based pattern recognition systems, hearing aids, precision circuit design
for instrumentation equipment, bio-inspired VLSI vision processing systems,
transistor parameter mismatch characterization, address-event-representation
VLSI, RF circuit design, real-time vision processing chips, and extending AER
to the nanoscale.

Dr. Linares-Barranco was a corecipient of the 1997 IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS Best Paper Award for the paper “A Real-Time Clustering
Microchip Neural Engine.” He was also corecipient of the 2000 IEEE Circuits
and Systems (CAS) Darlington Award for the paper “A General Translinear
Principle for Subthreshold MOS Transistors.”. From July 1997 until July 1999,
he was an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—PART II, ANALOG AND DIGITAL SIGNAL
PROCESSING, and from January 1998 to December 2009, he was an
Associate Editor for the IEEE TRANSACTIONS ON NEURAL
NETWORKS. He is an Associate Editor of Frontiers in Neuromorphic
Engineering since May 2010. He was the Chief Guest Editor of the 2003 IEEE
TRANSACTIONS ON NEURAL NETWORKS Special Issue on Neural
Hardware Implementations. From June 2009 until May 2011, he was the Chair
of the Sensory Systems Technical Committee of the IEEE CAS Society. In
March 2011 he became Chair of the IEEE CAS Society Spain Chapter.

1 (January 16, 2013 3:17 pm)

 I. APPENDIX 1. DVS CAMERA

Several DVS (Dynamic Vision Sensor) cameras have been
reported recently [1]-[5]. They all share the schematic
operation and structure shown in Fig. 1. Each pixel contains a
photosensor. Its photocurrent is transformed into a logarithmic
voltage . This voltage is fed to an “Amplify
and Reset” (A&R) block, the output of which is given by

(1)

where is the time of the previous reset (and event). A new
event is generated when Vdiff reaches one of the thresholds, or
equivalently, when reaches either

 or . If
reaches the positive threshold a positive event is sent out,
and if it reaches the negative threshold a negative event is
sent out. Reported DVS sensors can have a contrast sensitivity
as low as (10% contrast sensitivity) [5]. Pixels in
the array generate events asynchronously. These are arbitrated
by peripheral row and column arbiters [1]-[5],[8]-[11], and sent
off chip by writing the (x,y) coordinates and sign of each pixel
event on the off-chip AER bus. The delay between an event
being generated in a pixel and written off chip is typically less
than 1µs [5]. Maximum peak event rates of reported DVS chips
vary from 1Meps [1]-[2] to 20Meps [5].

 II. APPENDIX 2. AER CONVOLUTION CHIP

Reported AER ConvChips (convolution chips) [8],
[10]-[11] compute convolutions event by event. Fig. 2 shows a
typical ConvChip floorplan structure. It contains an array of
pixels each holding its state. When an input event (x,y) is
received at the input port, the kernel {wij} stored in the kernel
RAM is copied around the pixels at coordinate (x,y), and
added/subtracted to/from the respective pixel state. The pixel
state is compared against two thresholds, one positive and one
negative. If the state reaches one of the thresholds, the pixel
sends out a signed event to the peripheral arbiters, and the pixel
coordinate with the event sign is written on the output AER
bus. In parallel to this event-driven process, there is a periodic
leak process common to all pixels. A global leak clock
periodically decreases the neurons’ states towards their resting
level.

Reported AER ConvChips can handle input flows of up to
20Meps, produce peak output event rates of up to 45Meps, and
have kernel sizes of up to 32x32 pixels and pixel array sizes of

up to 64x64. They can also be assembled modularly in 2D
arrays for processing larger pixel arrays (an NxM array of
64x64 ConvChips can process input spaces of (Nx64)x(Mx64)
pixels).

Although at present reported ConvChips contain one
convolution module per chip, it is feasible to integrate multiple
modules per chip (several tens) together with dedicated event
routing and mapping modules [27]-[28],[45]-[46] in modern
deep submicron CMOS technologies. Many chips of this type
(about a hundred) could be assembled modularly on a PCB,
thus hosting thousands of convolutional modules per PCB.

FPGA versions of Event-driven convolution modules are
also under development [29], and it is possible to program
hundreds of these in a single high end modern FPGA [45].

Fig. 1: Typical Event-Driven DVS (Dynamic Vision Sensor) chip structure
and pixel diagram

Vlog Vo Iph()log=

Vdiff t() A Vlog t() Vlog to()–() AVo

Iph t()
Iph to()--------------- 
 log= =

to

Iph t() Iph to()⁄
C+ V

θ+ AVo⁄()exp= 1 C-⁄ V
θ –– AVo⁄()exp= Vdiff

V
θ+

V
θ-

C 1 ± 1,1=

Fig. 2: Typical Event-Driven Convolution Module Chip structure and
pixel diagram

Frame
time

Events
in

Frame

Event
Rate

Frames
per second
rendered

Time
delay
after
Frame

Fig. 3: Example snapshot of event viewer window of jAER. In this
example, events are histogrammed into 2D images for time intervals of
80ms. The frame shown contains 5113 events. The actual event rate was
63.91 keps, and frames were rendered at 10 frames per second with a
40ms delay.

2 (January 16, 2013 3:17 pm)

 III. APPENDIX 3. JAER VIEWER

The jAER (java AER) is an open source software tool
written in java by T. Delbrück [25] for controlling AER boards
and devices, visualizing event flows in 2D screens, recording
them on files, playing back recorded files, and performing a
variety of operations and filters on these flows. Fig. 3 shows an
example snapshot of the jAER viewer window. The viewer
collects events during a given frame time to build a 2D image.
These 2D images are sequenced on the computer screen. Frame
time can be adjusted dynamically by key strokes down to
microseconds or even less in case of very high speed
recordings. For example, Fig. 4 shows a DVS event recording
of a 5KHz spiral on an analog oscilloscope, played back at
different frame times (1.2ms, 156µs, and 8µs).

 IV. APPENDIX 4. AERST SIMULATOR

In this simulator a generic AER system is described by a
netlist that uses only two types of elements: instances and
channels. An instance is a block that generates and/or produces
AER streams. AER streams constitute the branches of the
netlist in an AER system, and are called channels. The
simulator imposes the restriction that a channel can only
connect a single AER output from one instance to a single
AER input of another (or the same) instance. This way,
channels represent point-to-point connections. To split and/or
merge channels, splitters and/or merger instances must be
included in the netlist.

Fig. 5 shows an example netlist and its ASCII file netlist
description. The netlist contains 7 instances and 8 channels.
The netlist description is provided to the simulator through a
text file, which is shown at the bottom of Fig. 5. Channel 1 is a
source channel. All its events are available a priori as an input
file to the simulator. There can be any arbitrary number of

source channels in the system. The following lines describe
each of the instances, one line per instance in the network. The
first field in the line is the instance name, followed by its input
channels, output channels, name of structure containing its
parameters, and name of structure containing its state. Each
instance is described by a user-made function bearing the name
of the instance. The simulator imposes no restriction on the
format of the parameter and state structures. This is left open to
the user writing the function code of each instance.

Channels are described by two dimensional matrices. Each row
in the matrix corresponds to one event. Each row has six
components

(2)

‘x’ and ‘y’ represent the coordinates or addresses of the event
and ‘sign’ shows its sign. These 3 parameters are the “event
parameters”, and they are defined by the user. The simulator
only transports them through the channels, but does not
interpret them. We always use x,y, and sign, but these can be
freely changed by the user, as long as the instances can
interpret them appropriately. The last 3 fields are event timing
parameters, and are managed by both the simulator and the
instances. Time ‘ ’ represents the time at which the
event is created at the emitter instance, ‘ ’ represents the
time at which the event is received by the receiver instance,
and ‘ ’ represents the time at which the event is finally
acknowledged by the receiver instance. We distinguish
between a pre-Request time and an effective Request
time . The first is dependent only on the emitter instance,
while the second requires the receiver instance to be ready to
process an event request (i.e., not to be busy processing a prior
event). This way, a full list of events described only by their
addresses, sign, and times can be provided as source.
Once the events are processed by the simulator, their final
effective request and acknowledge times are established.

Initially, all times are set to ‘-1’ to label them as
“unprocessed” events. The simulator looks at all channels,
selects the earliest (smallest) unprocessed event, calls
the instance of the corresponding channel and transfers the
event parameters to it. The instance returns and ,
updates its internal state, and eventually writes one or more
new unprocessed output events on its output channels. The
simulator then searches all the channels again for the next
unprocessed event. This process continues until there are no
more unprocessed events left. The result of the simulation is a
list of timed events on all channels. These lists are the flow of
events that would have been produced by a real system, and are
displayed by the jAER tool.

 V. APPENDIX 5. PARAMETER OPTIMIZATION BY
SIMULATED ANNEALING

The timing and threshold parameters of a spiking ConvNet
can be optimized. For this we called from within MATLAB the
AERST simulation program running different input sequences
and providing the timing and threshold parameters for each
run. We then used the simulated annealing routine within the
MATLAB optimization toolbox to find optimum sets for the
timing and threshold parameters. The cost function to be
minimized by the optimization routine was defined as

(3)

Fig. 4: Illustration of event recording time resolution adjustments with
jAER. (a) 5KHz rotating spiral photographed on analog phosphor
oscilloscope in x-y mode. (b) jAER playback of events recorded with DVS
camera by setting frame time to 1.2ms (1682 events in frame), (c) to 156µs
(306 events in frame), and (d) to 8µs (16 events in frame). Recorded event
rate was 2Meps.

(a) (b) (c) (d)

3

4 5 6 7

8

2

F
il

e

sp
li

tt
er

−90
Horizontal

Edge +90 m
er

ge
r

A
ck

Horizontal
Edge

1

%First, we declare sources to the system
% SOURCES SOURCES DATA
sources {1} {s1}

%Next, we declare blocks
%NAME IN-CHANNELS OUT-CHANNELSPARAMS STATES
splitter {1} {2,4} {params1} {state1}
h_sobel {2} {3} {params2} {state2}
imrotate90 {4} {5} {params3} {state3}
h_sobel {5} {6} {params4} {state4}
imrotate-90 {6} {7} {params5} {state5}
merger {3,7} {8} {params6} {state6}
ack_only {8} {8} {params7} {state7}

Fig. 5: (top) Example block diagram of AER system. (bottom) Netlist file
describing it.

x y sign TpreRqst TRqst TAck, , , , ,[]

TpreRqst
TRqst

TAck

TpreRqst
TRqst

TpreRqst

TAck

TpreRqst

TRqst TAck

COST aNFE bNCE P+–=

3 (January 16, 2013 3:17 pm)

where is the number incorrect positive events, is the
number of correct positive events, , , and

 if for some category there is no output event (neither
positive nor negative). Otherwise . With such high
value for P, the optimization discards directly those sets of
parameters that do not yield any output event for a category.
Then, if there are output events for all categories, the process
penalizes if there are incorrect positive events. It also tries to
maximize (with a weaker weight) the number of correct
positive events.

Table 1 illustrates some optimized results for the
experiment on human silhouettes detection. Each row
corresponds to a different optimum, while the top row
corresponds to the heuristic case described in Section IV, for
comparison. Table 1 shows the “optimized parameters”, the
“derived parameters” (TC5 was always set to 100ms), and the
following “performance” results: (a) success rate, (b) delays
(average and minimum) and (c) number of events to first
correct recognition (average and minimum). As can be seen,
the optimizations produced parameters similar to our
“intuition” for all thresholds, refractory times TR3, TR5, and
leak rates LR1, and LR3. However, parameters TR1, LR5, and LR6
were optimized to quite different values. As a result, derived
parameters gR3 and TC1 differ, but parameters gR5, TC3, p1, p3,
p5 were quite similar. On the other hand, success rate was
improved for the optimized cases as seen in Table 1, although
speed response was degraded. The number of events required
to achieve first recognition was on average between 600 and
900 events, captured during 40 to 60ms. For some transitions
and optimizations, the minimum number of events fell to less
than 100 events, with delays around 10ms and below. This is
due to the statistical distribution of the first event front, after a
transition (if first front events are distributed more uniformly
over the entire silhouette, then recognition is faster).

Table 2 illustrates some optimized results for the
experiment on poker cards symbol detection. In this case
reality moves much faster. Consequently, timing parameters
were optimized to quite different values. We intentionally set
refractory time of the first layer to zero to allow for maximum
speed. Parameter TC5 was set to 5ms because we observed that
this is approximately the maximum time one could set to
reconstruct a reasonable good looking frame for a symbol.
Recognition rate for this experiment was in the range
90.1-91.6%, which is lower than for the previous experiment
on human silhouettes. The obvious reason is that now not only
reality is much faster, but the sensor provides also many more
noise events, and events are also much more sparse.

When comparing the timing parameters in Table 1 and
Table 2 for the optimized event driven networks with the
results shown in Table 3 and Table 4 of the main text for the
frame driven networks, it is interesting to notice the following
observation. The refractory time of the latest layer TR5
provides a sense for the timing of the whole network. We can
see that for the silhouettes experiment TR5 is in the range of
10-12ms, while for the cards experiment it is in the range of
0.3-0.6ms. On the other hand, for the frame driven experiment
results shown in Table 3 and Table 4, we can see the optimum
frame times were about 50-75ms for the silhouettes and about
2-3ms for the cards. Thus, there seems to be a factor of about 5
between the TR5 optimum parameters and the optimum frame
times in Table 3 and Table 4. However, this conclusion is quite
speculative at this point and needs to be verified for more
varied experiments.

 VI. APPENDIX 6: COMPARISON OF FRAME-DRIVEN
VS. EVENT-DRIVEN HARDWARE REALIZATIONS

In order to compare Frame-Driven vs. Event-Driven
hardware ConvNet performance we rely on some reported
example realizations and comparisons [43]-[46], as well as

NFE NCE
a 1= b 0.1=

P 104=
P 0=

Table 1

optimized parameters derived parameters performance

TR1

(ms)
TR3
(ms)

TR5
(ms)

th1 th3 th5 th6
LR1
(s-1)

LR3
(s-1)

LR5
(s-1)

LR6
(s-1)

gR3 gR5
TC1
(ms)

TC3
(ms)

TC5
(ms)

p1 p3 p5
succ.
(%)

avg
delay
(ms)

min
delay
(ms)

avg#
events

min#
events

0.10 0.50 10.00 0.60 1.00 5.00 1.50 10.00 5.00 2.00 1.00 5.00 20.00 5.00 25.00 100 50.0 50.0 10.0 96.47 40.88 8.41 609 91
1.23 0.61 11.73 0.59 1.00 4.44 1.39 6.48 8.15 13.84 10.44 0.5019.15 46.45 23.17 100 37.8 37.8 8.5 98.37 51.85 23.50 803 249
1.30 0.79 11.75 0.63 0.96 4.53 1.36 7.79 8.18 13.56 10.40 0.6114.85 48.45 30.53 100 37.2 38.6 8.5 98.19 59.40 26.83 903 279
1.47 1.34 12.12 0.72 0.94 4.34 1.21 6.48 8.12 13.18 10.72 0.919.01 49.73 48.11 100 33.8 35.8 8.3 97.28 49.31 9.31 695 163
1.48 1.34 12.27 0.58 0.95 4.48 1.21 6.21 7.94 13.58 10.52 0.909.16 51.50 48.89 100 34.7 36.5 8.2 97.70 42.71 9.26 659 121
1.36 0.84 10.88 0.71 0.99 4.45 1.26 6.83 8.01 13.75 10.60 0.6113.02 54.95 34.15 100 40.4 40.9 9.2 98.31 43.94 20.43 654 215
1.24 0.85 10.81 0.71 0.98 4.44 1.32 6.83 8.02 13.75 10.60 0.6812.77 50.26 34.77 100 40.4 41.1 9.3 99.61 43.21 1.93 645 42
0.51 0.90 10.92 0.68 1.00 4.44 1.45 6.80 7.86 13.80 10.78 1.7812.12 20.60 36.64 100 40.6 40.7 9.2 97.94 48.37 12.02 729 101

Table 2

optimized parameters derived parameters performance

TR1

(ms)
TR3
(ms)

TR5
(ms)

th1 th3 th5 th6
LR1
(s-1)

LR3
(s-1)

LR5
(s-1)

LR6
(s-1)

gR3 gR5
TC1
(ms)

TC3
(ms)

TC5
(ms)

p1 p3 p5
succ.
(%)

avg
delay
(ms)

min
delay
(ms)

avg#
events

min#
events

0.00 0.10 0.46 0.64 1.42 7.36 2.17 0.72 0.90 1.21 0.72 - 4.60 0 8.00 5.00 0 80 12 91.57 5.97 0.20 30.85 14
0.00 0.07 0.24 0.40 1.55 7.02 3.39 13.01 4.14 8.32 2.17 - 3.43 010.23 5.00 0 146 21 90.10 6.02 2.22 31.80 14
0.00 0.08 0.44 0.68 1.18 8.11 2.17 13.83 3.04 7.96 4.94 - 5.50 07.37 5.00 0 92 11 91.43 5.63 0.80 31.45 13
0.00 0.19 0.57 0.38 3.99 3.62 1.82 6.37 6.60 5.96 5.11 - 3.00 0 6.03 5.00 0 32 8.8 91.36 4.68 0.33 30.60 11
0.00 0.14 0.54 0.33 4.20 3.60 1.82 8.72 6.60 5.90 5.13 - 3.86 0 4.66 5.00 0 33 9.3 90.35 4.26 0.12 34.20 12

4 (January 16, 2013 3:17 pm)

some futuristic projections [46]. Table 3 summarizes hardware
performance figures for three implementations. The first three
columns correspond to present day state-of-the-art while the
last two are for futuristic projections. All of them correspond to
implementing a set of Gabor convolution filters. The
frame-driven cases correspond to implementing 16 Gabor
filters with kernel of size 10x10 pixel operating on input
images of size 512x512 pixels. For the frame-driven examples
speed is expressed in frames per second. The GPU realization
is very fast but consumes a high power, while the Virtex6
realization [43]-[44] is comparable in speed but consumes
twenty times less power. The futuristic projection of this same
system on an ASIC using IBM 65nm 3D technology improves
speed by about five times and power a factor of three. Recently,
an event-driven configurable ConvNet array implemented on
Virtex6 is reported [45]-[46] (3rd column in Table 3). Speed is
expressed in terms of computation delay per event. Since
event-driven systems are pseudo-simultaneous, the filtered
output is available as soon as enough representative input
events are received. Therefore, speed response is not
determined by the delay of the hardware, but by the statistical
timing distribution of the events provided by the sensor. The
power dissipation of a system implemented in an FPGA is
mainly determined by FPGA clock and resources used. Since
the frame-driven and event-driven Virtex6 realizations in the
2nd and 3rd columns of Table 3 have the same clock and use
similar FPGA resources, power consumption is also similar.

A futuristic projection of an event-driven AER
convolution chip fabricated in 40nm technology can be
estimated to host one million neurons and one giga synapses
[11], while processing events with delays of 10ns. Assembling
AER grids [45] of such chips with 100 chips per PCB (Printed
Circuit Board) results in the estimated performance of the last
column in Table 3. AER processing chips power consumption
has two components, one that scales with the number of events
processed per unit time, plus another background component
which is constant. A great amount of power is consumed by
inter-chip event communication. Using modern low power
serial drivers [47] that consume 2.25mW at 6.25Gb/sec,
combined with circuit techniques that scale power with event
rate [48]-[49] it would be feasible to reach a power
consumption figure of 115µW at 10Meps (mega events per

second) event communication rate per link. If each chip has
four such links in a grid, communication power per chip would
be about 0.5mW. Assuming in-chip event-rate dependent
power is twice and background power is similar, each chip
could consume about 2.5mW when generating 10Meps. A grid
of 100 of those chips would dissipate 250mW.

 VII. APPENDIX 7: REVERSE CORRELATION
RECONSTRUCTIONS

In order to characterize the internal representations and
dynamics of the resulting event driven networks, we show here
reverse correlation reconstructions [50] for the output layer
neurons as well as for the layer C5 neurons (see Fig. 9 of main
paper). The purpose of reverse correlation reconstruction is to
discover what type of spatio-temporal patterns (at the input or
at intermediate feature maps) elicit activation of a given
neuron. For example, if in the poker cards experiment we pick
the output neuron for category ‘heart’, we follow the next
steps: (1) for all trials of all test simulations, we pick the full
list of ‘heart’ category output events {oheart(k)} that were
positive; (2) for a given time window Tw before each output
event k, we look at the neurons j we are interested in, and count
for each the number of positive npjk(Tw) and negative nnjk(Tw)
events that occurred during this time window; (3) and compute
for each of these neurons of interest j the following
reconstruction value

(4)

This number represents the average number of events (activity)
of a pixel j that would contribute to trigger one event at the
output neuron representing category ‘heart’. This average
number is also normalized with respect to the size of the time
window Tw , so that one can compare graphically short time
windows with respect to larger time windows. Note that, as the
Tw increases, the number of events also tends to increase.

Fig. 6(a-d) shows the reverse correlation reconstruction for
all four output category neurons (Layer C6), and Fig. 6(e-l) for

Present State-of-the-art Future Outlook

Frame-driven Frame-driven Event-Driven Frame-driven Event-Driven

nVidia GTX480 GPU Virtex6 Purdue/NYU Virtex6 IMSE/US
3D ASIC

Purdue/NYU
Grid 40nm

Input scene size 512x512 512x512 128x128 512x512 512x512

Delay 2.7ms/frame 5.5ms/frame 3µs/event 1.3ms/frame 10ns/event

Gabor array 16 convs 10x10 kernels 16 convs 10x10 kernels 64 convs 11x11 kernels 16 convs 10x10 kernels
100 convs 32x32

kernels

Neurons 4.05x106 4.05x106 2.62x105 4.05x106 108

Synapses 4.05x108 4.05x108 3.20x107 4.05x108 1011

Conn/s 1.6x1011 7.8x1010 2.6x109 3.0x1011 4.0x1013

Power 220W 10W 10W 3W 0.25W @ 10Meps/chip

Table 3. Hardware Performance Comparison of present and futuristic projections on Frame vs. Event-Driven Realizations

rj Tw()

npjk Tw() nnjk Tw()–()
k 1=

K

∑

KTw
---=

5 (January 16, 2013 3:17 pm)
F

ig
. 6

:
R

ev
er

se

co
rr

el
at

io
n

re
co

ns
tr

uc
ti

on
 o

f
in

pu
t a

nd
 fe

at
ur

e
m

ap

pa
tt

er
ns

 f
or

 o
ut

pu
t

L
ay

er
 C

6
ne

ur
on

s
(a

-d
)

an
d

L
ay

er
 C

5
ne

ur
on

s
(e

-l
).

 E
ac

h
su

bf
ig

ur
e

sh
ow

s
a

m
os

ai
c

of
 7

 c
ol

um
ns

an

d
11

 r
ow

s.
 E

ac
h

of

th
e

7
co

lu
m

ns

co
rr

es
po

nd
s

to
 a

di

ff
er

en
t t

im
e

w
in

do
w

T

w
 =

 {
0.

1,
 0

.2
5,

 0
.5

,
1.

0,
 2

.5
, 5

.0
, 1

0.
0}

m
s.

T

he
 1

1
ro

w
s

of
 e

ac
h

su
bf

ig
ur

e
ar

e
as

fo

llo
w

s:
 t

op
 r

ow

co
rr

es
po

nd
s

to
 t

he

32
x3

2
pi

xe
l i

np
ut

pa

tt
er

n,
 th

e
ne

xt
 6

ro

w
s

co
rr

es
po

nd
 t

o
th

e
6

14
x1

4
pi

xe
l

F
ea

tu
re

 M
ap

s
of

L

ay
er

 S
2,

 a
nd

 t
he

ne

xt
 4

 r
ow

s
co

rr
es

po
nd

 t
o

th
e

4
5x

5
pi

xe
l F

ea
tu

re

M
ap

s
of

 L
ay

er
 S

4.
 T

o
th

e
ri

gh
t

of
 e

ac
h

ro
w

th

e
nu

m
be

r
in

di
ca

te
s

th
e

m
ax

im
um

ab

so
lu

te
 v

al
ue

 o
f

al
l

pi
xe

ls
 in

 t
hi

s
F

ea
tu

re

M
ap

 r
ow

 fo
r

al
l t

im
e

w
in

do
w

s
T

w
 ,

w
hi

ch

ha
s

be
en

 m
ap

pe
d

to

ei
th

er
 t

he
 b

ri
gh

te
st

w

hi
te

 o
r

da
rk

es
t

bl
ac

k.
 V

al
ue

 0
 is

al

w
ay

s
m

ap
pe

d
to

 t
he

sa

m
e

ce
nt

ra
l g

ra
y

in
te

ns
it

y.

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(j
)

(k
)

(l
)

6 (January 16, 2013 3:17 pm)

all eight Layer C5 neurons. Each Layer C6 or C5 neuron
reconstruction corresponds to one subfigure. Each subfigure
has 7 columns and 11 rows. Each column corresponds to a
different value of the time window Tw , taking the values Tw =
{0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0}ms. The first top row
corresponds to the 32x32 pixel input. The next six rows
correspond to the six 14x14 pixel Feature Maps of Layer S2
(see Fig. 9 of main paper). And the next four rows show the
reconstructions of the four 5x5 pixel Feature Maps of Layer
S4. The gray level coding is common for each row. Central
gray corresponds to rj(Tw) = 0. The number to the right of each
row is the maximum absolute value of rj(Tw) among all
neurons of all Feature Maps in that row. This maximum value
is corresponds to brightest white or darkest black greyscale
value for this row gray level coding.

As can be seen in all subfigures, as the time window Tw
increases, the values of the reconstructions rj(Tw) tend to
decrease slightly. We can see that the correct input patterns can
be already seen for time windows of Tw = 0.1ms, and seem to
be optimum for Tw between 1ms and 2ms.

Another observation is that the full subfigure Fig. 6(e) is
empty: no positive events were elicited during all trials for the
first neuron of Layer C5. This neuron only produced negative
events. This means that this neuron specialized to become
negative when detecting the presence of specific features.
Similarly, note that the neurons in the second Feature Map of
Layer S4 have also specialized on negative events mainly.

View publication statsView publication stats

https://www.researchgate.net/publication/256837357

