15,719 research outputs found
Bimaximal Mixings from the Texture of the Right-handed Majorana Neutrino Mass Matrix
We study the origin of neutrino masses and mixing angles which can accomodate
the LMA MSW solutions of the solar neutrino anomaly as well as the solution of
the atmospheric neutrino problem, within the framework of the see-saw
mechanism. We employ the diagonal form of the Dirac neutrino mass matrices with
the physical masses as diagonal elements in the hierarchical order. Such choice
has been motivated from the fact that the known CKM angles for the quark
sector, are relatively small. We consider both possibilities where the Dirac
neutrino mass matrix is either the charged lepton or the up-quark mass matrix
within the framework of SO(10) GUT with or without supersymmetry. The non-zero
texture of the right-handed Majorana neutrino mass matrix is used for
the generation of the desired bimaximal mixings in a model independent way.
Both hierarchical and inverted hierarchical models of the left-handed Majorana
neutrino mass matrices are generated and then discussed with examples
Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models
Recent T2K results indicate a sizeable reactor angle theta_13 which would
rule out exact tri-bimaximal lepton mixing. We study the vacuum alignment of
the Altarelli-Feruglio A4 family symmetry model including additional flavons in
the 1' and 1" representations and show that it leads to trimaximal mixing in
which the second column of the lepton mixing matrix consists of the column
vector (1,1,1)^T/sqrt{3}, with a potentially large reactor angle. In order to
limit the reactor angle and control the higher order corrections, we propose a
renormalisable S4 model in which the 1' and 1" flavons of A4 are unified into a
doublet of S4 which is spontaneously broken to A4 by a flavon which enters the
neutrino sector at higher order. We study the vacuum alignment in the S4 model
and show that it predicts accurate trimaximal mixing with approximate
tri-bimaximal mixing, leading to a new mixing sum rule testable in future
neutrino experiments. Both A4 and S4 models preserve form dominance and hence
predict zero leptogenesis, up to renormalisation group corrections.Comment: 24 pages, 2 figures, version to be published in JHE
Myosin IIA-mediated forces regulate multicellular integrity during vascular sprouting
Angiogenic sprouting is a critical process involved in vascular network formation within tissues. During sprouting, tip cells and ensuing stalk cells migrate collectively into the extracellular matrix while preserving cell-cell junctions, forming patent structures that support blood flow. Although several signaling pathways have been identified as controlling sprouting, it remains unclear to what extent this process is mechanoregulated. To address this question, we investigated the role of cellular contractility in sprout morphogenesis, using a biomimetic model of angiogenesis. Three-dimensional maps of mechanical deformations generated by sprouts revealed that mainly leader cells, not stalk cells, exert contractile forces on the surrounding matrix. Surprisingly, inhibiting cellular contractility with blebbistatin did not affect the extent of cellular invasion but resulted in cell-cell dissociation primarily between tip and stalk cells. Closer examination of cell-cell junctions revealed that blebbistatin impaired adherens-junction organization, particularly between tip and stalk cells. Using CRISPR/Cas9-mediated gene editing, we further identified NMIIA as the major isoform responsible for regulating multicellularity and cell contractility during sprouting. Together, these studies reveal a critical role for NMIIA-mediated contractile forces in maintaining multicellularity during sprouting and highlight the central role of forces in regulating cell-cell adhesions during collective motility.R01 EB000262 - NIBIB NIH HHS; R01 HL115553 - NHLBI NIH HHSPublished versio
Embedding A4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy
We address two fundamental aspects of flavor physics: the mass hierarchy and
the large lepton mixing angles. On one side, left-right flavor symmetry
realizes the democratic mass matrix patterns and explains why one family is
much heavier than the others. On the other side, discrete flavor symmetry such
as A4 leads to the observed tribimaximal mixing for the leptons. We show that,
by explicitly breaking the left-right flavor symmetry into the diagonal A4, it
is possible to explain both the observed charged fermion mass hierarchies and
quark and lepton mixing angles. In particular we predict a heavy 3rd family,
the tribimaximal mixing for the leptons, and we suggest a possible origin of
the Cabibbo and other mixing angles for the quarks.Comment: 9 pages, uses revtex4 and axodraw.st
Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters
Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models\u27 initial standing wood and soil carbon pools, including historical climate patterns and the time since the last major disturbance, can be as important as potential climatic changes to prediction of the annual ecosystem carbon balance in this boreal spruce forest
Right unitarity triangles and tri-bimaximal mixing from discrete symmetries and unification
We propose new classes of models which predict both tri-bimaximal lepton
mixing and a right-angled Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle,
alpha approximately 90 degrees. The ingredients of the models include a
supersymmetric (SUSY) unified gauge group such as SU(5), a discrete family
symmetry such as A4 or S4, a shaping symmetry including products of Z2 and Z4
groups as well as spontaneous CP violation. We show how the vacuum alignment in
such models allows a simple explanation of alpha approximately 90 degrees by a
combination of purely real or purely imaginary vacuum expectation values (vevs)
of the flavons responsible for family symmetry breaking. This leads to quark
mass matrices with 1-3 texture zeros that satisfy the phase sum rule and lepton
mass matrices that satisfy the lepton mixing sum rule together with a new
prediction that the leptonic CP violating oscillation phase is close to either
0, 90, 180, or 270 degrees depending on the model, with neutrino masses being
purely real (no complex Majorana phases). This leads to the possibility of
having right-angled unitarity triangles in both the quark and lepton sectors.Comment: 29 pages, 4 figures, version to be published in NP
Recommended from our members
Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Intermodel comparisons and relationships to field measurements
Nine ecosystem process models were used to predict CO2 and water vapor exchanges by a 150-year-old black spruce forest in central Canada during 1994â1996 to evaluate and improve the models. Three models had hourly time steps, five had daily time steps, and one had monthly time steps. Model input included site ecosystem characteristics and meteorology. Model predictions were compared to eddy covariance (EC) measurements of whole-ecosystem CO2exchange and evapotranspiration, to chamber measurements of nighttime moss-surface CO2release, and to ground-based estimates of annual gross primary production, net primary production, net ecosystem production (NEP), plant respiration, and decomposition. Model-model differences were apparent for all variables. Model-measurement agreement was good in some cases but poor in others. Modeled annual NEP ranged from â11 g C mâ2 (weak CO2source) to 85 g C mâ2 (moderate CO2 sink). The models generally predicted greater annual CO2sink activity than measured by EC, a discrepancy consistent with the fact that model parameterizations represented the more productive fraction of the EC tower âfootprint.â At hourly to monthly timescales, predictions bracketed EC measurements so median predictions were similar to measurements, but there were quantitatively important model-measurement discrepancies found for all models at subannual timescales. For these models and input data, hourly time steps (and greater complexity) compared to daily time steps tended to improve model-measurement agreement for daily scale CO2 exchange and evapotranspiration (as judged by root-mean-squared error). Model time step and complexity played only small roles in monthly to annual predictions
Emergent quantum confinement at topological insulator surfaces
Bismuth-chalchogenides are model examples of three-dimensional topological
insulators. Their ideal bulk-truncated surface hosts a single spin-helical
surface state, which is the simplest possible surface electronic structure
allowed by their non-trivial topology. They are therefore widely
regarded ideal templates to realize the predicted exotic phenomena and
applications of this topological surface state. However, real surfaces of such
compounds, even if kept in ultra-high vacuum, rapidly develop a much more
complex electronic structure whose origin and properties have proved
controversial. Here, we demonstrate that a conceptually simple model,
implementing a semiconductor-like band bending in a parameter-free
tight-binding supercell calculation, can quantitatively explain the entire
measured hierarchy of electronic states. In combination with circular dichroism
in angle-resolved photoemission (ARPES) experiments, we further uncover a rich
three-dimensional spin texture of this surface electronic system, resulting
from the non-trivial topology of the bulk band structure. Moreover, our study
reveals how the full surface-bulk connectivity in topological insulators is
modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high
resolution version is available at
http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd
Search for Small Trans-Neptunian Objects by the TAOS Project
The Taiwan-America Occultation Survey (TAOS) aims to determine the number of
small icy bodies in the outer reach of the Solar System by means of stellar
occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9)
telescopes have been installed at Lulin Observatory in Taiwan to simultaneously
monitor some thousand of stars for such rare occultation events. Because a
typical occultation event by a TNO a few km across will last for only a
fraction of a second, fast photometry is necessary. A special CCD readout
scheme has been devised to allow for stellar photometry taken a few times per
second. Effective analysis pipelines have been developed to process stellar
light curves and to correlate any possible flux changes among all telescopes. A
few billion photometric measurements have been collected since the routine
survey began in early 2005. Our preliminary result of a very low detection rate
suggests a deficit of small TNOs down to a few km size, consistent with the
extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23
- âŠ