3,812 research outputs found

    Remote sensing and field assessment of tsunami effects on coastal pond aquaculture in northern Sumatra

    Get PDF
    An attempt was made to conduct spatial assessment of the pattern and extent of damage to coastal aquaculture ponds along the east coast of Aceh province in Sumatra, Indonesia, resulting from the tsunami event of 26 December 2004. High-resolution satellite imagery, i.e., SPOT-5 multispectral scenes covering the 700 km stretch of the coast, acquired before and after the tsunami, were digitally enhanced and visually interpreted to delineate pockets of aquaculture ponds that were discerned to be damaged and relatively intact. Field checks were conducted at 87 sites in the four eastern coastal districts. The results indicate that SPOT-5 multispectral imagery was minimally sufficient to detect areas of damaged and relatively intact aquaculture ponds, but the 10-m spatial resolution poses limitations to evaluating the extent of pond damage. Nevertheless, the 60 km swath of the imagery makes it reasonably affordable for large-area assessment to identify pockets of severe damage for targeting more detailed assessments. The image maps produced from a mosaic of the SPOT-5 scenes can also serve as base maps for spatial planning in the challenging task of reconstruction and rehabilitation of the disrupted livelihoods of the coastal communities.Remote sensing, Disasters, Spatial analysis, Coastal zone, ISEW, Indonesia, Aceh,

    A single grain approach applied to modelling recrystallization kinetics in a single-phase metal

    Get PDF
    A comprehensive model for the recrystallization kinetics is proposed which incorporates both microstructure and the textural components in the deformed state. The model is based on the single-grain approach proposed previously. The influence of the as-deformed grain orientation, which affects the stored energy via subgrain size and sub-boundary misorientation, is taken into account. The effects of the deformed grain geometry, the nucleation-site density, and the initial grain size prior to deformation on the recrystallization kinetics are assessed. The model is applied to the recrystallization kinetics of a cold-rolled AA1050 alloy

    Modeling gross primary production of two steppes in Northern China using MODIS time series and climate data

    Get PDF
    AbstractTerrestrial carbon cycle plays an important role in global climate change. As a key component of terrestrial carbon cycle, gross primary production (GPP) is a major determinant of the exchange of carbon between the atmosphere and terrestrial ecosystems. With rapid advancement of remote-sensing technology, it has become a common practice to utilize parameters derived from remote-sensing data to estimate GPP at a regional or global scale. In this study, a satellite-driven model, Vegetation Photosynthesis Model (VPM) was introduced to estimate GPP of two steppes, Xilinhot (XH, 43.5544°N, 116.6714°E) and Duolun (DL, 42.0467°N, 116.2836°E), at Inner Mongolia in Northern China, by integrating moderate resolution imaging spectral radiometer (MODIS) and meteorological measurements at the two flux towers. As defined by the input variables of VPM, two improved vegetation indices (enhanced vegetation index (EVI) and land surface water index (LSWI)) derived from the standard data product MOD09A1 of MODIS, air temperature and photosynthetic active radiation at the flux towers, were included for the model calculating. Canopy-level maximum light use efficiency, a key parameter for VPM, was estimated by using the observed CO2 flux data and photosynthetic active radiation (PAR). Observed GPP derived from flux data were then used to critically evaluate the performance of the model. The results indicate that the seasonal dynamics of GPP predicted by the VPM model agreed well with measured GPP by the flux towers. The determination coefficient (R2) of predicted GPP with measured GPP was 0.86 and 0.79 in 2006, 0.66 and 0.76 in 2007 for DL and XH, respectively. Further, time-series data for the EVI have a stronger linear relationship with the GPP than those for the Normalized Difference Vegetation Index. Results of this study demonstrate that the satellite-driven VPM has been potential for estimating site-level or regional grassland GPP, and might be an effective tool for scaling-up carbon fluxes

    Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme

    Get PDF
    We analyze and discuss the quantum noise in signal-recycled laser interferometer gravitational-wave detectors, such as Advanced LIGO, using a heterodyne readout scheme and taking into account the optomechanical dynamics. Contrary to homodyne detection, a heterodyne readout scheme can simultaneously measure more than one quadrature of the output field, providing an additional way of optimizing the interferometer sensitivity, but at the price of additional noise. Our analysis provides the framework needed to evaluate whether a homodyne or heterodyne readout scheme is more optimal for second generation interferometers from an astrophysical point of view. As a more theoretical outcome of our analysis, we show that as a consequence of the Heisenberg uncertainty principle the heterodyne scheme cannot convert conventional interferometers into (broadband) quantum non-demolition interferometers.Comment: 16 pages, 8 figure

    Sensitivity limitations in optical speed meter topology of gravitational-wave antennae

    Full text link
    The possible design of QND gravitational-wave detector based on speed meter principle is considered with respect to optical losses. The detailed analysis of speed meter interferometer is performed and the ultimate sensitivity that can be achieved is calculated. It is shown that unlike the position meter signal-recycling can hardly be implemented in speed meter topology to replace the arm cavities as it is done in signal-recycled detectors, such as GEO 600. It is also shown that speed meter can beat the Standard Quantum Limit (SQL) by the factor of 3\sim 3 in relatively wide frequency band, and by the factor of 10\sim 10 in narrow band. For wide band detection speed meter requires quite reasonable amount of circulating power 1\sim 1 MW. The advantage of the considered scheme is that it can be implemented with minimal changes in the current optical layout of LIGO interferometer.Comment: 20 pages, 12 figure

    Remote Sensing and Field Assessment of Tsunami Effects on Coastal Pond Aquaculture in Northern Sumatra

    Get PDF
    An attempt was made to conduct spatial assessment of the pattern and extent of damage to coastal aquaculture ponds along the east coast of Aceh province in Sumatra, Indonesia, resulting from the tsunami event of 26 December 2004. High-resolution satellite imagery, i.e., SPOT-5 multispectral scenes covering the 700 km stretch of the coast, acquired before and after the tsunami, were digitally enhanced and visually interpreted to delineate pockets of aquaculture ponds that were discerned to be damaged and relatively intact. Field checks were conducted at 87 sites in the four eastern coastal districts. The results indicate that SPOT-5 multispectral imagery was minimally sufficient to detect areas of damaged and relatively intact aquaculture ponds, but the 10-m spatial resolution poses limitations to evaluating the extent of pond damage. Nevertheless, the 60 km swath of the imagery makes it reasonably affordable for large-area assessment to identify pockets of severe damage for targeting more detailed assessments. The image maps produced from a mosaic of the SPOT-5 scenes can also serve as base maps for spatial planning in the challenging task of reconstruction and rehabilitation of the disrupted livelihoods of the coastal communities

    Sagnac Interferometer as a Speed-Meter-Type, Quantum-Nondemolition Gravitational-Wave Detector

    Full text link
    According to quantum measurement theory, "speed meters" -- devices that measure the momentum, or speed, of free test masses -- are immune to the standard quantum limit (SQL). It is shown that a Sagnac-interferometer gravitational-wave detector is a speed meter and therefore in principle it can beat the SQL by large amounts over a wide band of frequencies. It is shown, further, that, when one ignores optical losses, a signal-recycled Sagnac interferometer with Fabry-Perot arm cavities has precisely the same performance, for the same circulating light power, as the Michelson speed-meter interferometer recently invented and studied by P. Purdue and the author. The influence of optical losses is not studied, but it is plausible that they be fairly unimportant for the Sagnac, as for other speed meters. With squeezed vacuum (squeeze factor e2R=0.1e^{-2R} = 0.1) injected into its dark port, the recycled Sagnac can beat the SQL by a factor 103 \sqrt{10} \simeq 3 over the frequency band 10 {\rm Hz} \alt f \alt 150 {\rm Hz} using the same circulating power Ic820I_c\sim 820 kW as is used by the (quantum limited) second-generation Advanced LIGO interferometers -- if other noise sources are made sufficiently small. It is concluded that the Sagnac optical configuration, with signal recycling and squeezed-vacuum injection, is an attractive candidate for third-generation interferometric gravitational-wave detectors (LIGO-III and EURO).Comment: 12 pages, 6 figure

    New Detections of Optical Emission from Kiloparsec-scale Quasar Jets

    Get PDF
    We report initial results from the detection of optical emission in the arcsecond-scale radio jets of two quasars utilizing images from the {\it Hubble Space Telescope} archive. The optical emission has a very knotty appearance and is consistent with synchrotron emission from highly relativistic electrons in the jet. Combining these observations with those of previously reported features in other quasars, an emerging trend appears to be that their radio-to-optical spectral indices are steeper than those of similar features in jets of lower power radio sources.Comment: 4 pgs, 2 figs, Proc of The Physics of Relativistic Jets in the Chandra and XMM Era workshop, eds. G. Brunetti, D.E. Harris, R.M. Sambruna, and G. Setti, submitted to New Astronomy Review. Quality of figure 1 degraded to fit into preprint server. Includes elsart.cls fil

    Asymmetric magnetization reversal in exchange biased polycrystalline F/AF bilayers

    Full text link
    This paper describes a model for magnetization reversal in polycrystalline Ferromagnetic/Antiferromagnetic exchange biased bilayers. We assume that the exchange energy can be expanded into cosine power series. We show that it is possible to fit experimental asymmetric shape of hysteresis loops in exchange biased bilayer for any direction of the applied field. The hysteresis asymmetry is discussed in terms of energy considerations. An angle beta is introduced to quantify the easy axis dispersion of AF grains.Comment: 15 pages, 4 figure

    Solar Neutrinos with Three Flavor Mixings

    Get PDF
    The recent 71Ga solar neutrino observation is combined with the 37Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.Comment: August 1992 (Revised) PURD-TH-92-
    corecore