2,645 research outputs found

    Neglect-Like Effects on Drawing Symmetry Induced by Adaptation to a Laterally Asymmetric Visuomotor Delay

    Get PDF
    In daily interactions, our sensorimotor system accounts for spatial and temporal discrepancies between the senses. Functional lateralization between hemispheres causes differences in attention and in the control of action across the left and right workspaces. In addition, differences in transmission delays between modalities affect movement control and internal representations. Studies on motor impairments such as hemispatial neglect syndrome suggested a link between lateral spatial biases and temporal processing. To understand this link, we computationally modeled and experimentally validated the effect of laterally asymmetric delay in visual feedback on motor learning and its transfer to the control of drawing movements without visual feedback. In the behavioral experiments, we asked healthy participants to perform lateral reaching movements while adapting to delayed visual feedback in either left, right, or both workspaces. We found that the adaptation transferred to blind drawing and caused movement elongation, which is consistent with a state representation of the delay. However, the pattern of the spatial effect varied between conditions: whereas adaptation to delay in only the left workspace or in the whole workspace caused selective leftward elongation, adaptation to delay in only the right workspace caused drawing elongation in both directions. We simulated arm movements according to different models of perceptual and motor spatial asymmetry in the representation of delay and found that the best model that accounts for our results combines both perceptual and motor asymmetry between the hemispheres. These results provide direct evidence for an asymmetrical processing of delayed visual feedback that is associated with both perceptual and motor biases that are similar to those observed in hemispatial neglect syndrome

    Evidence on the impact of Sustained Exposure to Air Pollution on Life Expectancy from China's Huai River Policy

    Get PDF
    This paper's findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSP) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China's Huai River policy, which provided free winter heating via the provision of coal for boilers in cities North of the Huai River but denied heat to the South. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSP are about 184 μg/m3 (95% CI: 61, 307) or 55% higher in the North. Further, the results indicate that life expectancies are about 5.5 (95% CI: 0.8, 10.2) years lower in the North due to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m3 of TSP is associated with a reduction in life expectancy at birth of about 3.0 years (95% CI: 0.4, 5.6).Robert Wood Johnson Foundatio

    Chemical Fertilizer and Migration in China

    Get PDF
    This paper examines a possible connection between China’s massive rural to urban migration and high chemical fertilizer use rates during the late 1980s and 1990s. Using panel data on villages in rural China (1987-2002), we find that labor out-migration and fertilizer use per hectare are positively correlated. Using 2SLS, employing the opening of a Special Economic Zone in a nearby city as an instrument, we find that village fertilizer use is linked to contemporaneous short-term out-migration of farm workers. We also examine the long-term environmental consequences of chemical fertilizer use during this period. Using OLS, we find that fertilizer use intensity is correlated with future fertilizer use rates and diminished effectiveness of fertilizer, demonstrating persistency in use patterns, and suggesting that in areas with high use of fertilizer, the land is becoming less responsive. We also demonstrate that fertilizer use within a river basin is correlated with organic forms of water pollution, suggesting that industrialization has induced pollution in China both directly and through its impact on rural labor supply.

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Epidemic spreading in lattice-embedded scale-free networks

    Full text link
    We study geographical effects on the spread of diseases in lattice-embedded scale-free networks. The geographical structure is represented by the connecting probability of two nodes that is related to the Euclidean distance between them in the lattice. By studying the standard Susceptible-Infected model, we found that the geographical structure has great influences on the temporal behavior of epidemic outbreaks and the propagation in the underlying network: the more geographically constrained the network is, the more smoothly the epidemic spreads

    Neuroprotective Effect of Hyperbaric Oxygen Therapy on Anterior Ischemic Optic Neuropathy

    Get PDF
    The study investigated the therapeutic effect of hyperbaric oxygen (HBO) on anterior ischemic optic neuropathy in a rodent model (rAION). rAION was laser-induced in one eye of 63 mice. The fellow (uninjured) eye served as an internal control. Thirty-three mice underwent two 90-min sessions of 100% oxygen (2 atm) treatment immediately following injury and one session daily thereafter for up to 14 days. The remaining mice were untreated. Retinas were harvested at different time points, and mRNA levels of various genes were analyzed by real-time polymerase chain reaction and histologic study. Untreated mice: day 1 post-rAION – SOD-1 (oxidative-stress-related) decreased to 82% of control (uninjured eye) levels (P < 0.05), Caspase-3 (proapoptotic) decreased to 89%, Bcl-xL mildly increased (117%; all NS); day 3 – HO-1 and endothelial nitric oxide synthase (eNOS; ischaemia-related) decreased to 74%, and Bcl-2-associated X protein, Caspase-3, and B-cell lymphoma 2 (Bcl-2; apoptotic) increased by 170, 120, and 111%, respectively (all NS); day 21 – HO-1 increased to 222% (NS) and eNOS decreased to 48% (P < 0.05). Treated mice: day 1 – SOD-1 and Caspase-3 remained unchanged, Bcl-2 and Bcl-xL mildly increased (112 and 126% respectively); day 3 – HO-1 and eNOS increased, apoptosis-related gene decreased; day 21 – SOD-1 decreased whereas eNOS increased (P < 0.05), and HO-1 increased to a lesser degree than without treatment. None of the oxygen-treated animals had retinal ganglion cell loss or a decrease in Thy-1 expression. In conclusion, HBO treatment after rAION induction influences the expression of apoptosis-related genes as well as oxidative-stress-induced and ischaemia-related genes and may exert a neuroprotective effect

    Exact Results for Kinetics of Catalytic Reactions

    Full text link
    The kinetics of an irreversible catalytic reaction on substrate of arbitrary dimension is examined. In the limit of infinitesimal reaction rate (reaction-controlled limit), we solve the dimer-dimer surface reaction model (or voter model) exactly in arbitrary dimension DD. The density of reactive interfaces is found to exhibit a power law decay for D<2D<2 and a slow logarithmic decay in two dimensions. We discuss the relevance of these results for the monomer-monomer surface reaction model.Comment: 4 pages, RevTeX, no figure

    Lattice Gas Automata for Reactive Systems

    Full text link
    Reactive lattice gas automata provide a microscopic approachto the dynamics of spatially-distributed reacting systems. After introducing the subject within the wider framework of lattice gas automata (LGA) as a microscopic approach to the phenomenology of macroscopic systems, we describe the reactive LGA in terms of a simple physical picture to show how an automaton can be constructed to capture the essentials of a reactive molecular dynamics scheme. The statistical mechanical theory of the automaton is then developed for diffusive transport and for reactive processes, and a general algorithm is presented for reactive LGA. The method is illustrated by considering applications to bistable and excitable media, oscillatory behavior in reactive systems, chemical chaos and pattern formation triggered by Turing bifurcations. The reactive lattice gas scheme is contrasted with related cellular automaton methods and the paper concludes with a discussion of future perspectives.Comment: to appear in PHYSICS REPORTS, 81 revtex pages; uuencoded gziped postscript file; figures available from [email protected] or [email protected]
    corecore