184 research outputs found

    MicroRNA-275 and its target vitellogenin-2 are crucial in ovary development and blood digestion of Haemaphysalis longicornis

    Get PDF
    Background: The hard tick Haemaphysalis longicornis is widely distributed in eastern Asia, New Zealand and Australia and is considered the major vector of Theileria and Babesia, harmful parasites to humans and animals. Female ticks need successful blood meals to complete the life-cycle. Therefore, elucidation of the underlying molecular mechanisms of H. longicornis development and reproduction is considered important for developing control strategies against the tick and tick-borne pathogens. Methods: Luciferase assays were used to identify the targets of micro RNA miR-275 in vitro. RNAi of Vitellogenin (Vg) was used in phenotype rescue experiments of ticks with miR-275 inhibition, and these analyses were used to identify the authentic target of miR-275 in vivo. The expression of miR-275 in different tissues and developmental stages of ticks was assessed by real-time PCR. To elucidate the functions of miR-275 in female ticks, we injected a miR-275 antagomir into female ticks and observed the phenotypic changes. Statistical analyses were performed with GraphPad5 using Student’s t-test. Results: In this study, we identified Vg-2 as an authentic target of miR-275 both in vitro and in vivo by luciferase assays and phenotype rescue experiments. miR-275 plays the regulatory role in a tissue-specific manner and differentially in developmental stages. Silencing of miR-275 resulted in blood digestion problems, substantially impaired ovary development and significantly reduced egg mass (P < 0.0001). Furthermore, RNAi silencing of Vg-2 not only impacted the blood meal uptake (P < 0.05) but also the egg mass (P < 0.05). Significant rescue was observed in miR-275 knockout ticks when RNAi was applied to Vg-2. Conclusion: To our knowledge, this study is the first demonstration that miR-275 targets Vg-2 in H. longicornis and regulates the functions of blood digestion and ovary development. These findings improve the molecular understanding of tick development and reproduction

    Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016)

    The Role of Side Chains and Hydration on Mixed Charge Transport in <i>n</i> ‐Type Polymer Films

    Get PDF
    Introducing ethylene glycol (EG) side chains to a conjugated polymer backbone is a well‐established synthetic strategy for designing organic mixed ion‐electron conductors (OMIECs). However, the impact that film swelling has on mixed conduction properties has yet to be scoped, particularly for electron‐transporting (n‐type) OMIECs. Here, the authors investigate the effect of the length of branched EG chains on mixed charge transport of n‐type OMIECs based on a naphthalene‐1,4,5,8‐tetracarboxylic‐diimide‐bithiophene backbone. Atomic force microscopy (AFM), grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), and scanning tunneling microscopy (STM) are used to establish the similarities between the common‐backbone films in dry conditions. Electrochemical quartz crystal microbalance with dissipation monitoring (EQCM‐D) and in situ GIWAXS measurements reveal stark changes in film swelling properties and microstructure during electrochemical doping, depending on the side chain length. It is found that even in the loss of the crystallite content upon contact with the aqueous electrolyte, the films can effectively transport charges and that it is rather the high water content that harms the electronic interconnectivity within the OMIEC films. These results highlight the importance of controlling water uptake in the films to impede charge transport in n‐type electrochemical devices

    Monitoring Prevalence and Persistence of Environmental Contamination by SARS-CoV-2 RNA in a Makeshift Hospital for Asymptomatic and Very Mild COVID-19 Patients

    Get PDF
    Objective: To investigate the details of environmental contamination status by SARS-CoV-2 in a makeshift COVID-19 hospital.Methods: Environmental samples were collected from a makeshift hospital. The extent of contamination was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for SARS-CoV-2 RNA from various samples.Results: There was a wide range of total collected samples contaminated with SARS-CoV-2 RNA, ranging from 8.47% to 100%. Results revealed that 70.00% of sewage from the bathroom and 48.19% of air samples were positive. The highest rate of contamination was found from the no-touch surfaces (73.07%) and the lowest from frequently touched surfaces (33.40%). The most contaminated objects were the top surfaces of patient cubic partitions (100%). The median Ct values among strongly positive samples were 33.38 (IQR, 31.69–35.07) and 33.24 (IQR, 31.33–34.34) for ORF1ab and N genes, respectively. SARS-CoV-2 relic RNA can be detected on indoor surfaces for up to 20 days.Conclusion: The findings show a higher prevalence and persistence in detecting the presence of SARS-CoV-2 in the makeshift COVID-19 hospital setting. The contamination mode of droplet deposition may be more common than contaminated touches

    Alcohol Extracts From Ganoderma lucidum Delay the Progress of Alzheimer’s Disease by Regulating DNA Methylation in Rodents

    Get PDF
    Age-related changes in methylation are involved in the occurrence and development of tumors, autoimmune disease, and nervous system disorders, including Alzheimer’s disease (AD), in elderly individuals; hence, modulation of these methylation changes may be an effective strategy to delay the progression of AD pathology. In this study, the AD model rats were used to screen the main active extracts from the mushroom, Ganoderma lucidum, for anti-aging properties, and their effects on DNA methylation were evaluated. The results of evaluation of rats treated with 100 mg/kg/day of D-galactose to induce accelerated aging showed that alcohol extracts of G. lucidum contained the main active anti-aging extract. The effects on DNA methylation of these G. lucidum extracts were then evaluated using SAMP8 and APP/PS1 AD model mice by whole genome bisulfite sequencing, and some methylation regulators including Histone H3, DNMT3A, and DNMT3B in brain tissues were up-regulated after treatment with alcohol extracts from G. lucidum. Molecular docking analysis was carried out to screen for molecules regulated by specific components, including ganoderic acid Mk, ganoderic acid C6, and lucidone A, which may be active ingredients of G. lucidum, including the methylation regulators of Histone H3, MYT, DNMT3A, and DNMT3B. Auxiliary tests also demonstrated that G. lucidum alcohol extracts could improve learning and memory function, ameliorate neuronal apoptosis and brain atrophy, and down-regulate the expression of the AD intracellular marker, Aβ1-42. We concluded that alcohol extracts from G. lucidum, including ganoderic acid and lucidone A, are the main extracts involved in delaying AD progression

    Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites:TL-LUE Parameterization and Validation

    Get PDF
    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR

    New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes

    Get PDF
    Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field
    corecore