42 research outputs found

    TPST2-mediated receptor tyrosine sulfation enhances leukocidin cytotoxicity and S. aureus infection

    Get PDF
    BackgroundAn essential fact underlying the severity of Staphylococcus aureus (S. aureus) infection is the bicomponent leukocidins released by the pathogen to target and lyse host phagocytes through specific binding cell membrane receptors. However, little is known about the impact of post-transcriptional modification of receptors on the leukocidin binding.MethodIn this study, we used small interfering RNA library (Horizon/Dharmacon) to screen potential genes that affect leukocidin binding on receptors. The cell permeability was investigated through flow cytometry measuring the internalization of 4′,6-diamidino-2-phenylindole. Expression of C5a anaphylatoxin chemotactic receptor 1 (C5aR1), sulfated C5aR1 in, and binding of 6x-His–tagged Hemolysin C (HlgC) and Panton-Valentine leukocidin (PVL) slow-component to THP-1 cell lines was detected and analyzed via flow cytometry. Bacterial burden and Survival analysis experiment was conducted in WT and myeloid TPST-cko C57BL/6N mice.ResultsAfter short hairpin RNA (shRNA) knockdown of TPST2 gene in THP-1, HL-60, and RAW264.7, the cytotoxicity of HlgAB, HlgCB, and Panton–Valentine leukocidin on THP-1 or HL-60 cells was decreased significantly, and the cytotoxicity of HlgAB on RAW264.7 cells was also decreased significantly. Knockdown of TPST2 did not affect the C5aR1 expression but downregulated cell surface C5aR1 tyrosine sulfation on THP-1. In addition, we found that the binding of HlgC and LukS-PV on cell surface receptor C5aR1 was impaired in C5aR1+TPST2− and C5aR1−TPST2− cells. Phagocyte knockout of TPST2 protects mice from S. aureus infection and improves the survival of mice infected with S. aureus.ConclusionThese results indicate that phagocyte TPST2 mediates the bicomponent leukocidin cytotoxicity by promoting cell membrane receptor sulfation modification that facilitates its binding to leukocidin S component

    808 nm driven Nd 3+

    Get PDF
    The in vivo biological applications of upconversion nanoparticles (UCNPs) prefer excitation at 700-850 nm, instead of 980 nm, due to the absorption of water. Recent approaches in constructing robust Nd3+ doped UCNPs with 808 nm excitation properties rely on a thick Nd3+ sensitized shell. However, for the very important and popular Frster resonance energy transfer (FRET)-based applications, such as photodynamic therapy (PDT) or switchable biosensors, this type of structure has restrictions resulting in a poor energy transfer. In this work, we have designed a NaYF4:Yb/Ho@NaYF4:Nd@NaYF4 core-shell-shell nanostructure. We have proven that this optimal structure balances the robustness of the upconversion emission and the FRET efficiency for FRET-based bioapplications. A proof of the concept was demonstrated for photodynamic therapy and simultaneous fluorescence imaging of HeLa cells triggered by 808 nm light, where low heating and a high PDT efficacy were achieved

    Recent Developments in Food Packaging Based on Nanomaterials

    No full text
    The increasing demand for high food quality and safety, and concerns of environment sustainable development have been encouraging researchers in the food industry to exploit the robust and green biodegradable nanocomposites, which provide new opportunities and challenges for the development of nanomaterials in the food industry. This review paper aims at summarizing the recent three years of research findings on the new development of nanomaterials for food packaging. Two categories of nanomaterials (i.e., inorganic and organic) are included. The synthetic methods, physical and chemical properties, biological activity, and applications in food systems and safety assessments of each nanomaterial are presented. This review also highlights the possible mechanisms of antimicrobial activity against bacteria of certain active nanomaterials and their health concerns. It concludes with an outlook of the nanomaterials functionalized in food packaging

    Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety

    No full text
    Food safety issues are a worldwide concern. Pathogens, toxins, pesticides, veterinary drugs, heavy metals, and illegal additives are frequently reported to contaminate food and pose a serious threat to human health. Conventional detection methods have difficulties fulfilling the requirements for food development in a modern society. Therefore, novel rapid detection methods are urgently needed for on-site and rapid screening of massive food samples. Due to the extraordinary properties of nanozymes and aptamers, biosensors composed of both of them provide considerable advantages in analytical performances, including sensitivity, specificity, repeatability, and accuracy. They are considered a promising complementary detection method on top of conventional ones for the rapid and accurate detection of food contaminants. In recent years, we have witnessed a flourishing of analytical strategies based on aptamers and nanozymes for the detection of food contaminants, especially novel detection models based on the regulation by single-stranded DNA (ssDNA) of nanozyme activity. However, the applications of nanozyme-based aptasensors in food safety are seldom reviewed. Thus, this paper aims to provide a comprehensive review on nanozyme-based aptasensors in food safety, which are arranged according to the different interaction modes of ssDNA and nanozymes: aptasensors based on nanozyme activity either inhibited or enhanced by ssDNA, nanozymes as signal tags, and other methods. Before introducing the nanozyme-based aptasensors, the regulation by ssDNA of nanozyme activity via diverse factors is discussed systematically for precisely tailoring nanozyme activity in biosensors. Furthermore, current challenges are emphasized, and future perspectives are discussed.https://doi.org/10.3390/foods1104054

    Silver Nanocluster-Embedded Zein Films as Antimicrobial Coating Materials for Food Packaging

    Get PDF
    Highly efficient antimicrobial agents with low toxicity and resistance have been enthusiastically pursued to address public concerns on microbial contamination in food. Silver nanoclusters (AgNCs) are known for their ultrasmall sizes and unique optical and chemical properties. Despite extensive studies of AgNCs for biomedical applications, previous research on their application as antimicrobials for food applications is very limited. Here, for the first time, by incorporating AgNCs (~2 nm in diameter) into zein films that are widely used as food packaging materials, we developed a novel coating material with potent antimicrobial activity, low toxicity to human cells, and low potential to harm the environment. In addition, we systematically evaluated the antimicrobial activities and cytotoxicity of AgNCs-embedded zein films and compared them to zein films embedded with AgNO3 or Ag nanoparticles with diameters of 10 and 60 nm (AgNP10 and AgNP60, respectively). At equivalent silver concentrations, AgNCs and AgNO3 solutions exhibited considerably higher antimicrobial activities than those of AgNP10 and AgNP60 solutions. Moreover, AgNCs exhibited less cytotoxicity to human cells than AgNO3, with a half maximal inhibitory concentration (IC50) of 34.68 μg/mL for AgNCs, compared to 9.14 μg/mL for AgNO3. Overall, the novel AgNCs coating developed in this research has great potential for antimicrobial applications in food packaging materials due to its high antimicrobial efficacy, ultrasmall size, and low cytotoxicity

    Phase Transition Behaviors of Poly(<i>N</i>-isopropylacrylamide) Nanogels with Different Compositions Induced by (−)-Epigallocatechin-3-gallate and Ethyl Gallate

    No full text
    Phase transition behaviors of poly(N-isopropylacrylamide) nanogels with different compositions induced by (−)-epigallocatechin-3-gallate (EGCG) and ethyl gallate (EG) has been investigated systematically. Monodisperse poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) (P(NIPAM-co-NMAM)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)) nanogels with different feeding monomer ratios were prepared by emulsion polymerization. P(NIPAM-co-NMAM) nanogels exhibit rapid isothermal phase transition behavior in EGCG solutions with low concentration (10−3 mol/L) in less than 10 minutes. The thermosensitive phase transition behaviors of nanogels are affected not only by the copolymerized monomers but also by the concentrations of EGCG and EG in aqueous solutions. Nanogels remain in a shrunken state and do not exhibit thermosensitive phase transition behaviors in EGCG solutions (≥5 mmol/L), whereas they display thermo-responsive phase transition behaviors in EG solutions. The volume phase transition temperature (VPTT) shifts to lower temperatures with increasing EG concentration. The diameters of P(NIPAM-co-NMAM) nanogels decrease with increasing EG concentration at temperatures between 29 and 33 °C. In contrast, the diameters of P(NIPAM-co-HEMA) nanogels increase with increasing EGCG concentration at temperatures between 37 and 45 °C. The results demonstrate the potential of nanogels for simple detection of EG and EGCG concentrations in aqueous solutions over a wide temperature range, and EGCG can serve as a signal for the burst-release of drugs from the P(NIPAM-co-NMAM)-based carriers at physiological temperature

    A Dual-Mode Method Based on Aptamer Recognition and Time-Resolved Fluorescence Resonance Energy Transfer for Histamine Detection in Fish

    No full text
    Histamine produced via the secretion of histidine decarboxylase by the bacteria in fish muscles is a toxic biogenic amine and of significant concern in food hygiene, since a high intake can cause poisoning in humans. This study proposed a fluorometric and colorimetric dual-mode specific method for the detection of histamine in fish, based on the fluorescence labeling of a histamine specific aptamer via the quenching and optical properties of gold nanoparticles (AuNPs). Due to the fluorescence resonance energy transfer phenomenon caused by the proximity of AuNPs and NaYF4:Ce/Tb, resulting in the quenching of the fluorescence signal in the detection system, the presence of histamine will compete with AuNPs to capture the aptamer and release it from the AuNP surface, inducing fluorescence recovery. Meanwhile, the combined detection of the two modes showed good linearity with histamine concentration, the linear detection range of the dual-mode synthesis was 0.2&ndash;1.0 &mu;mol/L, with a detection limit of 4.57 nmol/L. Thus, this method has good selectivity and was successfully applied to the detection of histamine in fish foodstuffs with the recoveries of 83.39~102.027% and 82.19~105.94% for Trichiurus haumela and Thamnaconus septentrionalis, respectively. In addition, this method was shown to be simple, rapid, and easy to conduct. Through the mutual verification and combined use of the two modes, a highly sensitive, rapid, and accurate dual-mode detection method for the analysis of histamine content in food was established, thereby providing a reference for the monitoring of food freshness

    Genome-wide profiling of RNA editing sites in sheep

    No full text
    Abstract Background The widely observed RNA-DNA differences (RDDs) have been found to be due to nucleotide alteration by RNA editing. Canonical RNA editing (i.e., A-to-I and C-to-U editing) mediated by the adenosine deaminases acting on RNA (ADAR) family and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) family during the transcriptional process is considered common and essential for the development of an individual. To date, an increasing number of RNA editing sites have been reported in human, rodents, and some farm animals; however, genome-wide detection of RNA editing events in sheep has not been reported. The aim of this study was to identify RNA editing events in sheep by comparing the RNA-seq and DNA-seq data from three biological replicates of the kidney and spleen tissues. Results A total of 607 and 994 common edited sites within the three biological replicates were identified in the ovine kidney and spleen, respectively. Many of the RDDs were specific to an individual. The RNA editing-related genes identified in the present study might be evolved for specific biological functions in sheep, such as structural constituent of the cytoskeleton and microtubule-based processes. Furthermore, the edited sites found in the ovine BLCAP and NEIL1 genes are in line with those in previous reports on the porcine and human homologs, suggesting the existence of evolutionarily conserved RNA editing sites and they may play an important role in the structure and function of genes. Conclusions Our study is the first to investigate RNA editing events in sheep. We screened out 607 and 994 RNA editing sites in three biological replicates of the ovine kidney and spleen and annotated 164 and 247 genes in the kidney and spleen, respectively. The gene function and conservation analysis of these RNA editing-related genes suggest that RNA editing is associated with important gene function in sheep. The putative functionally important RNA editing sites reported in the present study will help future studies on the relationship between these edited sites and the genetic traits in sheep
    corecore