491 research outputs found

    Line-integral representations for the elastic displacements, stresses and interaction energy of arbitrary dislocation loops in transversely isotropic bimaterials

    Get PDF
    AbstractThe elastic displacements, stresses and interaction energy of arbitrarily shaped dislocation loops with general Burgers vectors in transversely isotropic bimaterials (i.e. joined half-spaces) are expressed in terms of simple line integrals for the first time. These expressions are very similar to their isotropic full-space counterparts in the literature and can be easily incorporated into three-dimensional (3D) dislocation dynamics (DD) simulations for hexagonal crystals with interfaces/surfaces. All possible degenerate cases, e.g. isotropic bimaterials and isotropic half-space, are considered in detail. The singularities intrinsic to the classical continuum theory of dislocations are removed by spreading the Burgers vector anisotropically around every point on the dislocation line according to three particular spreading functions. This non-singular treatment guarantees the equivalence among different versions of the energy formulae and their consistency with the stress formula presented in this paper. Several numerical examples are provided as verification of the derived dislocation solutions, which further show significant influence of material anisotropy and bimaterial interface on the elastic fields and interaction energy of dislocation loops

    Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk

    Get PDF
    AbstractThis paper considers the bending of transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate, subject to a transverse load in the form of qrk (k is zero or a finite even number). The differential equations satisfied by stress functions for the particular problem are derived. An elaborate analysis procedure is then presented to derive these stress functions, from which the analytical expressions for the axial force, bending moment and displacements are obtained through integration. The method is then applied to the problem of transversely isotropic functionally graded circular plate subject to a uniform load, illustrating the procedure to determine the integral constants from the boundary conditions. Analytical elasticity solutions are presented for simply-supported and clamped plates, and, when degenerated, they coincide with the available solutions for an isotropic homogenous plate. Two numerical examples are finally presented to show the effect of material inhomogeneity on the elastic field in FGM plates

    Line-integral representations of the displacement and stress fields due to an arbitrary Volterra dislocation loop in a transversely isotropic elastic full space

    Get PDF
    AbstractTransversely isotropic materials or hexagonal crystals are commonly utilized in various engineering fields; however, dislocation solutions for such special materials have not been fully developed. In this paper, we present a comprehensive study on this important topic, where only Volterra dislocations of the translational type are considered. Based on the potential theory of linear elasticity, we extend the well-known Burgers displacement equation for an arbitrarily shaped dislocation loop in an isotropic elastic full space to the transversely isotropic case. Both the induced displacements and stresses are expressed uniformly in terms of simple and explicit line integrals along the dislocation loop. We introduce three quasi solid angles to describe the displacement discontinuities over the dislocation surface and extract a simple step function out of these angles to characterize the dependence of the displacements on the configuration of the dislocation surface. We also give a new explicit formula for calculating accurately and efficiently the traditional solid angle of an arbitrary polygonal dislocation loop. From the present line-integral representations, exact closed-form solutions in terms of elementary functions are further obtained in a unified way for the displacement and stress fields due to a straight dislocation segment of arbitrary orientation. The non-uniqueness of the elastic field solution due to an open dislocation segment is rigorously discussed and demonstrated. For a circular dislocation loop parallel to the plane of isotropy, a new explicit expression of the induced elastic field is presented in terms of complete elliptic integrals. Several numerical examples are also provided as illustration and verification of the derived dislocation solutions, which further show the importance of material anisotropy on the dislocation-induced elastic field, and reveal the non-uniqueness feature of the elastic field due to a straight dislocation segment

    Finite Element Analysis of the Temperature Field of an Emergency Brake and Study of its Thermal Properties

    No full text
    For simulation of typical operating conditions of an emergency brake, analyze the theoretical heat energy of single emergency braking. The formula of the maximum temperature of a contact point was derived from the theory of friction heat conduction during braking. The finite element model of the disc brake temperature field was constructed with ANSYS/LS-DYNA software. The effect of brake safety factor and different thermal properties on the temperature field is analyzed, indicating that the temperature distribution of ductile iron brake friction pairs is superior to the steel brake ones. The results and analysis provide certain indications of the design and applicability of an emergency brake.Для моделирования типичных условий эксплуатации аварийного тормоза проанализирована теоретическая тепловая энергия одного аварийного торможения. Выведена формула максимальной температуры контактной точки на основании теории теплопроводности трения при торможении. Конечноэлементная модель температурного поля дискового тормоза была построена с использованием программного пакета ANSYS/LS-DYNA. Проанализировано влияние запаса прочности тормaза и различных тепловых свойств на температурное поле. Результаты показали, что распределение температур в парах трения тормоза из чугуна с шаровидным графитом более равномерно, чем в парах трения стального тормоза. Полученные результаты и выполненный анализ позволяют дать некоторые рекомендации относительно конструкции и применения аварийного тормоза

    Effective block sparse representation algorithm for DOA estimation with unknown mutual coupling

    Get PDF
    Unknown mutual coupling effect can degrade the performance of a direction of arrival (DOA) estimation method. In this letter, a new method is proposed for uniform linear arrays (ULAs) to tackle this problem. Considering the sparse representation exploiting the inherent structure of the received data, the effective block sparse representation and the convex optimization problem is constructed using the steering vector parameterizing method. The proposed solution based on the l1- SVD (singular value decomposition) can exploit the information provided by the whole array and the Toeplitz structure of the mutual coupling matrix (MCM) in the ULA. Simulation results are provided to demonstrate its performance with unknown mutual coupling in comparison with some existing methods

    Nucleon-nucleon momentum correlation function for light nuclei

    Get PDF
    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in Nucl. Phys.

    Three-Particle Correlations from Parton Cascades in Au+Au Collisions

    Get PDF
    We present a study of three-particle correlations among a trigger particle and two associated particles in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. We found that three-particle correlation densities in different angular directions with respect to the triggered particle (`center', `cone', `deflected', `near' and `near-away') increase with the number of participants. The ratio of `deflected' to `cone' density approaches to 1.0 with the increasing of number of participants, which indicates that partonic Mach-like shock waves can be produced by strong parton cascades in central Au+Au collisions.Comment: 9 pages, 6 figures; Final version to appear in Physics Letters

    Performance investigation of hybrid excited switched flux permanent magnet machines using frozen permeability method

    Get PDF
    This study investigates the electromagnetic performance of a hybrid excited switched flux permanent magnet (SFPM) machine using the frozen permeability (FP) method. The flux components due to PMs, field excitation windings and armature windings have been separated using the FP method. It has been used to separate the torque components due to the PMs and excitations, providing a powerful insight into the torque generation mechanism of hybrid excited SFPM machines. It also allows the accurate calculation of d- and q-axis inductances, which will then be used to calculate the torque, power and power factor against rotor speed to compare the relative merits of hybrid excited SFPM machines with different types of PMs (i.e. NdFeB, SmCo and Ferrite). This offers the possibility of choosing appropriate PMs for different applications (maximum torque or maximum speed). Although only one type of hybrid excited PM machine has been employed to carry out the investigations, the method used in this study can also be extended to other hybrid excited PM machines. The predicted results have been validated by tests

    Molecular cytogenetic identification of a wheat-Thinopyrum ponticum substitution line with stripe rust resistance

    Get PDF
    Thinopyrum ponticum (2n = 10x = 70) has donated rust resistance genes to protect wheat from this fungal disease. In the present study, the line ES-7, derived from the progeny of the crosses between common wheat cultivar Abbondanza and Triticum aestivum–Th. ponticum partial amphiploid line Xiaoyan784, was characterized by cytological, fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and EST-STS marker techniques. Cytological observations revealed that the configuration of ES-7 was 2n = 42 = 21 II. GISH and FISH results showed that ES-7 had two St chromosomes and lacked 5A chromosomes compared to common wheat. The 4A chromosome of ES-7 had small alterations from common wheat. Two EST-SSR markers BE482522 and BG262826, specific to Th. ponticum and tetraploid Pseudoroegneria spicata (2n = 4x = 28), locate on the homoeologous group 5 chromosomes of wheat, could amplify polymorphic bands in ES-7. It was suggested that the introduced St chromosomes belonged to homoeologous group 5, that is, ES-7 was a 5St (5A) disomic substitution line. Furthermore, ES-7 showed highly resistance to mixed stripe rust races of CYR32 and CYR33 in adult stages, which was possibly inherited from Th. ponticum. Thus, ES-7 can be used for wheat stripe rust resistance breeding program
    corecore