743 research outputs found

    Synergistic drug combinations from electronic health records and gene expression.

    Get PDF
    ObjectiveUsing electronic health records (EHRs) and biomolecular data, we sought to discover drug pairs with synergistic repurposing potential. EHRs provide real-world treatment and outcome patterns, while complementary biomolecular data, including disease-specific gene expression and drug-protein interactions, provide mechanistic understanding.MethodWe applied Group Lasso INTERaction NETwork (glinternet), an overlap group lasso penalty on a logistic regression model, with pairwise interactions to identify variables and interacting drug pairs associated with reduced 5-year mortality using EHRs of 9945 breast cancer patients. We identified differentially expressed genes from 14 case-control human breast cancer gene expression datasets and integrated them with drug-protein networks. Drugs in the network were scored according to their association with breast cancer individually or in pairs. Lastly, we determined whether synergistic drug pairs found in the EHRs were enriched among synergistic drug pairs from gene-expression data using a method similar to gene set enrichment analysis.ResultsFrom EHRs, we discovered 3 drug-class pairs associated with lower mortality: anti-inflammatories and hormone antagonists, anti-inflammatories and lipid modifiers, and lipid modifiers and obstructive airway drugs. The first 2 pairs were also enriched among pairs discovered using gene expression data and are supported by molecular interactions in drug-protein networks and preclinical and epidemiologic evidence.ConclusionsThis is a proof-of-concept study demonstrating that a combination of complementary data sources, such as EHRs and gene expression, can corroborate discoveries and provide mechanistic insight into drug synergism for repurposing

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio

    Driving with retinitis pigmentosa

    Get PDF
    Background: To establish the proportion of patients with retinitis pigmentosa (RP) meeting the Australian fitness to drive (FTD) visual standards. Methodology: A prospective consecutive case series of patients with a clinical or genetic diagnosis of RP. Data on age at symptom onset, current driving status, inheritance pattern, better eye visual acuity (BEVA), binocular Esterman visual field (BEVF) parameters, genotype and ability to meet the driving standards based on BEVA and BEVF were collected. Outcome measures included the proportion of RP patients overall meeting the standards and clinical predictors for passing. A sub-analysis was performed on those RP patients who reported to drive. Change in BEVA and BEVF parameters across age in specific genotype groups was assessed. Results: Overall, 228 patients with RP had a BEVF assessment. Only 39% (89/228) met the driving standards. Younger age at the time of testing was the only significant predictor (p \u3c 0.01) for passing. Of the 55% of RP patients who reported to drive, 52% (65/125) met the standards, decreasing to 14% in the 56- to 65-year-old age group. RP patients harbouring mutations in HK1 or RHO genes may have slower rates of decline in their VF parameters. Conclusion: Nearly 40% of RP patients met the driving standards. However, almost 50% of RP drivers were unaware of their failure to meet the current standards. BEVF testing is essential in the assessment of RP patients who are still driving. Phenotype and genotype predictors for passing the standards warrant further investigation. Abbreviation: FTD, fitness to drive; IRD, inherited retinal disease; RP, retinitis pigmentosa; RHO, rhodopsin; HK1, hexokinase 1; PRPF31 pre-mRNA processing factor 31; RPGR, retinitis pigmentosa GTPase regulator; VF, visual field; BEVA, better eye visual acuity; BEVF, binocular Esterman visual field

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Inactivation of nuclear GSK3 beta by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response

    Get PDF
    Variable, diversity and joining (V(D)J) recombination and immunoglobulin class switch recombination (CSR) are key processes in adaptive immune responses that naturally generate DNA double-strand breaks (DSBs) and trigger a DNA repair response. It is unclear whether this response is associated with distinct survival signals that protect T and B cells. Glycogen synthase kinase 3 beta (GSK3 beta) is a constitutively active kinase known to promote cell death. Here we show that phosphorylation of GSK3 beta on Ser(389) by p38 MAPK (mitogen-activated protein kinase) is induced selectively by DSBs through ATM (ataxia telangiectasia mutated) as a unique mechanism to attenuate the activity of nuclear GSK3 beta and promote survival of cells undergoing DSBs. Inability to inactivate GSK3 beta through Ser(389) phosphorylation in Ser(389)Ala knockin mice causes a decrease in the fitness of cells undergoing V(D)J recombination and CSR. Preselection-Tcrb repertoire is impaired and antigen-specific IgG antibody responses following immunization are blunted in Ser(389)GSK3 beta knockin mice. Thus, GSK3 beta emerges as an important modulator of the adaptive immune response.We thank Dr T. Honjo and Dr K. Otsu for the generation of the original AID deficient mice and the p38 flox/flox mice, respectively. We thank C. Charland for flow cytometry analysis and cell sorting, the Vermont Cancer Center DNA Sequencing Facility and the University of Vermont College of Med. Microscopy Imaging Center for their services. We thank Dr D.R. Green and Dr R.C. Budd for helpful discussion regarding the mechanisms of cell death and reagents. This work was supported by NIH grant R01 AI051454 (M.R. and T.M.T.), P20 GM103496 (T.M.T.) NIH grant R37 GM41052 (M.S.K.) and Lake Champlain Cancer Research Organization (M.R.).S

    Molecular simulations studies of gas adsorption in metal–organic frameworks

    Get PDF
    Using computational tools ranging from molecular simulations – including both Monte Carlo and molecular dynamics methods – to quantum mechanical (QM) calculations (primarily at density functional theory (DFT) level), this work focuses on addressing some of the challenges faced in molecular simulations of gas adsorption in metal–organic frameworks (MOFs). This work consists of two themes: one concerns gas adsorption in MOFs with coordinatively unsaturated metal sites (cus’s), and the other one deals with predicting and understanding the breathing behaviour of the flexible MOF MIL-53(Sc). It has been shown experimentally that incorporation of cus’s – also known as “open” metal sites or unsaturated metal centres – into MOFs significantly enhances the uptake of certain gases such as CO2 and CH4. As a result of the considerably enhanced, localized guest-molecule interactions with the cus’s, it, however, remains a challenge to predict correctly adsorption isotherms and/or mechanisms in MOFs with cus’s using grand-canonical Monte Carlo (GCMC) simulations based on generic classical force fields. To address this problem, two multi-scale modelling approaches – which combine GCMC simulations with QM calculations – have been proposed in this work. The first approach is based on the direct implementation of a fluid–framework potential energy surface, calculated by a hybrid DFT/ab initio method, in the GCMC simulations. The second approach involves parameterization of ab initio force fields for GCMC simulations of gas adsorption in MOFs with cus’s. This approach focuses on the generation of accurate ab initio reference data, selection of semiempirical model potentials, and force-field fitting through a multi-objective genetic algorithm approach. The multi-scale simulation strategy not only yields adsorption isotherms in very good agreement with experimental data but also correctly captures adsorption mechanisms, including the adsorption on the cus’s, observed experimentally but absent from GCMC simulations based on generic force fields. The second challenge that this work aims to address concerns the “breathing” phenomenon of MOFs, in which the framework structure adapts its pore opening to accommodate guest molecules, for example. The breathing effect gives rise to some exceptional properties of these MOFs and hence promising applications. However, framework flexibility often poses a challenge for computational studies of such MOFs, because suitable flexible force fields for frameworks are lacking and the effort involved in developing a new one is no less a challenge. Here, an alternative to the force-field-based approach is adopted. Ab initio molecular dynamics (AIMD) simulations – which combine classical molecular dynamics simulations with electronic-structure calculations “on the fly” – have been deployed to study structural changes of the breathing MOF MIL-53(Sc) in response to changes in temperature over the range 100–623 K and adsorption of CO2 at 0–0.9 bar at 196 K. AIMD simulations employing dispersion-corrected DFT accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase with increasing temperature. AIMD simulations were also used to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. Both the multi-scale simulation strategy for gas adsorption in MOFs with cus’s and the AIMD study of the stimuli-responsive breathing behaviour of MIL-53(Sc) illustrate the power and promise of combining molecular simulations with quantum mechanical calculations for the prediction and understanding of MOFs

    Impact of changing the measles vaccine vial size on Niger's vaccine supply chain: a computational model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks.</p> <p>Methods</p> <p>We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes.</p> <p>Results</p> <p>Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from 0.47USto0.47US to 0.71US and $1.26US, respectively.</p> <p>Conclusions</p> <p>The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.</p

    In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1

    Get PDF
    The var-gene encoding Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is known to play a major role in the pathogenicity of the P. falciparum parasite. The protein enables the parasite to adhere to the endothelial linings of small blood vessels (cytoadherence) as well as to non-infected erythrocytes (rosetting), thus preventing clearance from the bloodstream. The development and spread of resistance towards most anti-malarial drugs used for treatment and prevention of the most severe form of malaria truly emphasise the importance of a continuous research and development of new drugs. In this study we use Systematic Evolution of Ligands by EXponential enrichment (SELEX) methodology to isolate high-affinity ligands (aptamers). To validate the results from the SELEX in vitro selection, different aptamers have been selected against PfEMP1 in a live cell assay of P. falciparum strain FCR3S1.2, a highly rosetting strain. We have been able to show the rosette disrupting capacity of these SELEX-aptamers at concentrations of 33 nM and with 100% disruption at 387 nM. The described results show that RNA aptamers are promising candidates for adjunct therapy in severe malaria

    Results of a phase I/II multi-center investigation of udenafil in adolescents after fontan palliation

    Get PDF
    BACKGROUND: The Fontan operation results in a circulation that is dependent on low pulmonary vascular resistance to maintain an adequate cardiac output. Medical therapies that lower pulmonary vascular resistance may augment cardiac output and improve long-term outcomes. OBJECTIVES: This phase I/II clinical trial conducted by the Pediatric Heart Network was designed to evaluate short-term safety, pharmacokinetics (PK), and preliminary efficacy of udenafil in adolescents following Fontan. METHODS: A 5-day dose-escalation trial was conducted in five study cohorts of six subjects each (37.5, 87.5, and 125 mg daily, 37.5 and 87.5 mg by mouth twice daily). A control cohort with 6 subjects underwent exercise testing only. Adverse events (AEs) were recorded, PK samples were collected on study days six through eight, and clinical testing was performed at baseline and day five. RESULTS: The trial enrolled 36 subjects; mean age 15.8 years (58% male). There were no significant differences in subject characteristics between cohorts. No drug-related serious AEs were reported during the study period; 24 subjects had AEs possibly or probably related to study drug. Headache was the most common AE, occurring in 20 of 30 subjects. The 87.5 mg bid cohort was well tolerated, achieved the highest maximal concentration (506 ng/mL) and the highest average concentration over the dosing interval (279 ng/mL), and was associated with a suggestion of improvement in myocardial performance. Exercise performance did not improve in any of the dosing cohorts. CONCLUSIONS: Udenafil was well-tolerated at all dosing levels. The 87.5 mg bid cohort achieved the highest plasma drug level and was associated with a suggestion of improvement in myocardial performance. These data suggest that the 87.5 mg bid regimen may be the most appropriate for a Phase III clinical trial
    corecore