305 research outputs found

    The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network

    Get PDF
    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further development of biomimetic tools for measuring RBC deformability (e.g. the AMVN) could enable a more functionally relevant testing of RBC mechanical properties

    A Highly Magnified Gravitationally Lensed Red QSO at z = 2.5 with a Significant Flux Ratio Anomaly

    Get PDF
    We present the discovery of a gravitationally lensed dust-reddened QSO at z = 2.517, identified in a survey for QSOs by infrared selection. Hubble Space Telescope imaging reveals a quadruply lensed system in a cusp configuration, with a maximum image separation of ~1.8\arcsec. We find that compared to the central image of the cusp, the neighboring brightest image is anomalous by a factor of ~ 7 - 10, which is the largest flux anomaly measured to date in a lensed QSO. Incorporating high-resolution Jansky Very Large Array radio imaging and sub-mm imaging with the Atacama Large (sub-)Millimetre Array, we conclude that a low-mass perturber is the most likely explanation for the anomaly. The optical through near-infrared spectrum reveals that the QSO is moderately reddened with E(B - V) = 0.7 - 0.9. We see an upturn in the ultraviolet spectrum due to ~ 1% of the intrinsic emission being leaked back into the line of sight, which suggests that the reddening is intrinsic and not due to the lens. The QSO may have an Eddington ratio as high as L/L_Edd ~ 0.2. Consistent with previous red QSO samples, this source exhibits outflows in its spectrum as well as morphological properties suggestive of it being in a merger-driven transitional phase. We find a host-galaxy stellar mass of log M_*/M_Sun = 11.4, which is higher than the local M_BH vs. M_* relation, but consistent with other high redshift QSOs. When de-magnified, this QSO is at the knee of the luminosity function, allowing for the detailed study of a more typical moderate-luminosity infrared-selected QSO at high redshift.Comment: Accepted for publication in ApJ; 29 pages, 18 figures, 8 tables. arXiv admin note: text overlap with arXiv:1807.0543

    Natural HLA Class I Polymorphism Controls the Pathway of Antigen Presentation and Susceptibility to Viral Evasion

    Get PDF
    HLA class I polymorphism creates diversity in epitope specificity and T cell repertoire. We show that HLA polymorphism also controls the choice of Ag presentation pathway. A single amino acid polymorphism that distinguishes HLA-B*4402 (Asp116) from B*4405 (Tyr116) permits B*4405 to constitutively acquire peptides without any detectable incorporation into the transporter associated with Ag presentation (TAP)-associated peptide loading complex even under conditions of extreme peptide starvation. This mode of peptide capture is less susceptible to viral interference than the conventional loading pathway used by HLA-B*4402 that involves assembly of class I molecules within the peptide loading complex. Thus, B*4402 and B*4405 are at opposite extremes of a natural spectrum in HLA class I dependence on the PLC for Ag presentation. These findings unveil a new layer of MHC polymorphism that affects the generic pathway of Ag loading, revealing an unsuspected evolutionary trade-off in selection for optimal HLA class I loading versus effective pathogen evasion

    Talazoparib, a Poly(ADP-ribose) Polymerase Inhibitor, for Metastatic Castration-resistant Prostate Cancer and DNA Damage Response Alterations: TALAPRO-1 Safety Analyses

    Get PDF
    BACKGROUND: The phase II TALAPRO-1 study (NCT03148795) demonstrated durable antitumor activity in men with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). Here, we detail the safety profile of talazoparib. PATIENTS AND METHODS: Men received talazoparib 1 mg/day (moderate renal impairment 0.75 mg/day) orally until radiographic progression, unacceptable toxicity, investigator decision, consent withdrawal, or death. Adverse events (AEs) were evaluated: incidence, severity, timing, duration, potential overlap of selected AEs, dose modifications/discontinuations due to AEs, and new clinically significant changes in laboratory values and vital signs. RESULTS: In the safety population (N = 127; median age 69.0 years), 95.3% (121/127) experienced all-cause treatment-emergent adverse events (TEAEs). Most common were anemia (48.8% [62/127]), nausea (33.1% [42/127]), decreased appetite (28.3% [36/127]), and asthenia (23.6% [30/127]). Nonhematologic TEAEs were generally grades 1 and 2. No grade 5 TEAEs or deaths were treatment-related. Hematologic TEAEs typically occurred during the first 4-5 months of treatment. The median duration of grade 3-4 anemia, neutropenia, and thrombocytopenia was limited to 7-12 days. No grade 4 events of anemia or neutropenia occurred. Neither BRCA status nor alteration origin significantly impacted the safety profile. The median (range) treatment duration was 6.1 (0.4-24.9) months; treatment duration did not impact the incidence of anemia. Only 3 of the 15 (11.8% [15/127]) permanent treatment discontinuations were due to hematologic TEAEs (thrombocytopenia 1.6% [2/127]; leukopenia 0.8% [1/127]). CONCLUSION: Common TEAEs associated with talazoparib could be managed through dose modifications/supportive care. Demonstrated efficacy and a manageable safety profile support continued evaluation of talazoparib in mCRPC. CLINICALTRIALS.GOV IDENTIFIER: NCT0314879

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 Ă— coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software
    • …
    corecore