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Abstract

The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the

microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability

measurements performed in vitro in the context of microvascular perfusion has been notoriously

difficult. This study compares the measurements of RBC deformability performed using

micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular

network (AMVN). Human RBCs were collected from healthy consenting volunteers,

leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a

non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair

the deformability of RBCs. Samples comprising cells with two different levels of deformability

were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to

the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC

deformability with increasing glutaraldehyde concentration. Micropore filtration showed a

significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither

micropore filtration nor ektacytometry measurements could accurately predict the AMVN

perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but

had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore

filtration and ektacytometry showed a linear decline in effective RBC deformability with

increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the

AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the

microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of

RBC deformability performed using either micropore filtration or ektacytometry may not

represent the ability of same RBCs to perfuse microvascular networks. Further development of

biomimetic tools for measuring RBC deformability (e.g. the AMVN) could enable a more

functionally relevant testing of RBC mechanical properties.
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Introduction

The continual flow of blood through the human microvasculature ensures the transport of

dissolved gases, nutrients and regulatory molecules throughout the body as well as the

prompt removal of metabolic waste products. Adequate perfusion of the microvasculature

depends on several important hemorheological parameters including blood plasma viscosity,

hematocrit, red blood cell (RBC) aggregation, and particularly the ability of individual

RBCs to deform (e.g. contort, twist, change shape) when flowing through microvessels

ranging in size from 100 μm arterioles down to the smallest 3 μm capillaries.[1-7]

Alterations in RBC deformability have been associated with pathophysiological insults in

conditions as diverse as diabetes mellitus, sickle cell anemia, malaria, sepsis, and

postischaemic reperfusion.[8-14] A reduction in RBC deformability sometimes precedes

more severe and often irreversible pathological changes in other vital organs and organ

systems, and in some cases may even be the root cause of organ injury.[15-21]

A continuous research effort has been focused over the years on the development of

instruments for measuring the mechanical response of RBCs to various deforming forces at

either the single-cell or multi-cell level, and thus quantifying RBC “deformability”.[22] The

two techniques most frequently utilized in the vast majority of research performed to date in

this area (and perhaps most accessible in the clinical settings) are the micro-pore filtration

assay[23-30] and ektacytometry.[31-43] In this paper, we directly compare the

measurements of RBC deformability performed using these two methodologies with the

ability of RBCs to perfuse an artificial microvascular network (AMVN), a microfluidic

device developed in our laboratory for modeling the dynamics of blood flow and traffic of

circulating cells in the microvasculature.[44-47] We completed the comparison using RBC

samples with cell deformability artificially impaired via graded exposure to glutaraldehyde

(a non-specific protein cross-linker) and to diamide (a spectrin-specific cross-linker), both of

which are frequently used to determine the sensitivity of various deformability metrics.[42,

48-51] We found that the two methodologies were often in disagreement with each other,

and that neither micro-pore filtration nor ektacytometry could accurately predict the ability

of RBC samples to perfuse the AMVN. Our results support the notion that RBC

deformability is not a unique property but is rather operationally defined by the

measurement methodology, and emphasize the need for the development of biomimetic

tools for a more relevant assessment of RBC mechanical properties.

Materials and Methods

Blood Samples

Human whole blood was collected from healthy consenting volunteers by venipuncture into

6 mL Vacutainer tubes (K2EDTA, BD, Franklin Lakes, NJ, USA). Plasma was removed by
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centrifugation (800×g for 5 minutes, 22°C) and discarded. Pelleted RBCs were re-suspended

in 50 mL of phosphate buffered saline (PBS, Sigma, St. Louis, USA) and passed through a

leukoreduction filter (Purcell NEO, Pall Corporation, Port Washington, NY, USA). The

leukoreduced RBC suspension was washed in PBS once (800×g for 5 minutes, 22°C), and

adjusted to a 40% hematocrit.

Glutaraldehyde Treatment

The solution of glutaraldehyde (8% w/v, Sigma, St. Louis, USA) was diluted in PBS to form

stock solutions with concentrations of glutaraldehyde corresponding to twice the targeted

final concentrations. RBC samples (leukoreduced and washed as described above) were

combined with a stock solution of glutaraldehyde (1:1 v/v) to expose the cells to

glutaraldehyde concentrations in the range from 0.02 to 0.08% (w/v). The cells were

incubated in glutaraldehyde for 10 minutes at room temperature (22°C), and then the cross-

linking reaction was quenched by adding about 50 mL of an isotonic glucose- and albumin-

containing saline-phosphate (GASP) buffer (1% w/v bovine serum albumin, 9 mM

Na2HPO4, 1.3 mM NaH2PO4, 140 mM NaCl, 5.5 mM glucose, pH 7.4, 290 mmol kg-1).

Immediately after quenching, the treated RBCs were washed in the GASP buffer (800×g, 2

min) and the excess buffer was removed to adjust the hematocrit to 40%. In order to prepare

RBC suspensions containing 0%, 10%, 50% and 100% of hardened cells, the 40%

hematocrit suspension of RBCs that were exposed to 0.08% glutaraldehyde (as described

above) was mixed a different ratios with a 40% hematocrit suspension of fresh, untreated

RBCs.

Diamide Treatment

A suspension of RBCs (prepared as described above) was washed once in GASP, and its

hematocrit was adjusted to 45%. A 1 mL aliquot of the 45% hematocrit suspension was

treated with 125 μL of a stock diamide solution (Sigma, St. Louis, USA) resulting in a 40%

hematocrit suspension and a final concentration of diamide ranging from 0.02 to 0.08%

(w/v). Samples were incubated for 20 minutes at 22°C and immediately analyzed. (Note that

the final hematocrit of diamide-treated RBCs was 40%, same as for the glutaraldehyde-

treated RBCs.)

Ektacytometry Measurements

The treated RBC samples were prepared for analysis in the microfluidic ektacytometer

RheoScan-D (RheoMeditech, Seoul, Korea) by re-suspending 6 μL of the 40% RBC

suspension in 0.6 mL of PVP (polyvinylpyrrolidone) in accordance with the protocol

suggested by the manufacturer. Each sample was analyzed using a 210 μm height cartridge

of the RheoScan-D to determine the elongation index (EI) for each RBC sample exposed to

shear stresses ranging from 1 to 17 Pa (the limits of the instrument). EI values at 3 Pa and 17

Pa were recorded for diamide and glutaraldehyde concentrations ranging from 0.02% to

0.08% in 0.02% increments and then normalized with respect to the untreated sample. The

normalized values (n = 4) were averaged and plotted versus their respective concentrations.
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Micro-pore Filtration Measurements

The micro-pore filtration protocol used in this study has been previously described by us in

detail.[45] Briefly, 5 μm track-etched polycarbonate filters (Nuclepore™, Whatman, GE

Healthcare Biosciences, Piscataway, NJ, USA) were pre-wetted with 40% ethyl alcohol and

then incubated in GASP buffer for 1 hour before use. Filtration time (FT) was defined as the

time it took a 200 μL sample to pass through the filter. Each individual filter was calibrated

using GASP buffer before performing the measurements on RBCs. The FT for treated RBCs

was measured by timing the passage of 200 μL of 1% hematocrit RBC suspensions being

tested through the filter. The RBC filterability was calculated as the ratio of FT for GASP

buffer (free of cells) and the FT for the RBC suspension being tested. These values were

recorded for diamide and glutaraldehyde concentrations ranging from 0.02% to 0.08% in

0.02% increments and then normalized with respect to the untreated sample. The normalized

values (n = 4) were averaged and plotted versus their respective concentrations.

Measurement of the Artificial Microvascular Network Perfusion

The artificial microvascular network (AMVN) devices used in this study were fabricated

using conventional photolithography techniques as described in detail in our previous

studies.[45-47] Briefly, the pattern of AMVN was transferred onto a silicon wafer

(University Wafer, South Boston, MA, USA) in bas-relief by exposing the wafer covered

with a 5 μm layer of negative photoresist (SU-8 2005, MicroChem Corp, Newton, MA,

USA) to UV light through a chrome photomask (Photo Sciences Inc., Torrance, CA, USA).

The three dimensional structure of the inlet and the outlet ports were created by depositing

small droplets of SU-8 2007 photoresist onto the outlines of the inlet and the outlet,

exposing these features to UV light and curing them.[46, 52] This patterned silicon wafer

acted as the master for molding many exact replicas of the AMVN out of

polydimethylsiloxane (PDMS, Slygard 184, Dow Corning Corp., Midland, MI, USA). The

access through-holes for the inlet (4 mm) and outlet (2 mm) of the PDMS replica were

created using cylindrical biopsy punches (Acuderm Inc, Fort Lauderdale, FL, USA). The

AMVN devices were assembled by exposing the patterned side of the PDMS replica and the

surface of a glass slide (spin-coated with a thin film of PDMS) to air plasma (120 sec,

PDC-3xG, Harrick Plasma, Ithaca, NY, USA) and sealing them together. Assembled

AMVN devices were filled with 1% solution of mPEG-silane (Laysan Bio, Inc., Arab, AL,

USA) in GASP solution, and were incubated at 22°C in 100% humidity overnight to

suppress possible RBC adhesion to channel walls during the experiments.

The measurement of the AMVN perfusion was performed following the protocol developed

in our previous studies.[45, 46] Briefly, to perform an experiment, the assembled and treated

AMVN devices were placed onto the mechanical stage of an inverted microscope (IX71,

Olympus America Inc., Center Valley, PA, USA). The microscope was equipped with a

high-speed, high-sensitivity camera (MC1362, Mikrotron GmbH, Unterschleissheim,

Germany) connected to a Camera Link frame grabber (PIXCI E4, EPIX Inc., Buffalo Grove,

IL, USA) installed in a desktop computer. A narrow band-pass blue filter (394 ± 50nm,

B-390, Hoya Corp., Fremont, CA, USA) was used to improve the contrast of the images

(RBCs appear dark in blue light). A simple water column was used to provide the pressure

difference between the inlet and the outlet of the AMVN device. In the beginning of each
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AMVN measurement, the driving pressure difference was set to zero, the RBC sample was

loaded into the inlets of the device, and the acquisition of short sequences of images (10

frames, every 10 seconds, for 10 minutes) was initiated. The driving pressure difference was

then set to 20 cm H2O, and kept constant for the duration of the measurement. The acquired

images were analyzed using customary algorithm written in MATLAB (The Math Works

Inc., Natick, MA, USA) to determine the average RBC velocity in the arteriole of the

AMVN. The steady state value of the average RBC velocity was used to calculate the

overall flow rate through the arteriole (perfusion) of the AMVN.[46] The overall flow rate

for each sample treated with glutaraldehyde or diamide (concentrations varying from 0.02%

to 0.08%, with 0.02% increments) were normalized with respect to the untreated sample.

Normalized values were averaged over four individual trials and plotted versus their

respective concentrations.

Statistical analysis

Data were presented as mean ± standard deviation of individual measurements performed on

multiple independent samples. The measurements of RBC deformability performed with

different techniques were compared using the two-tailed, two-sample unequal variance t-

test. The differences were deemed statistically significant for p<0.05.

Results

Conventional techniques for measuring RBC deformability

Figure 1 illustrates the two conventional methodologies for measuring RBC deformability

used in this study – micro-pore filtration (Fig. 1A) and ektacytometry (Fig. 1B). In the

micro-pore filtration assay, the deformability of RBCs is evaluated by measuring the time it

takes a set volume of a dilute RBC suspension to pass through a thin polycarbonate

membrane containing capillary-size pores (usually a 5 μm Nuclepore filter).[45, 53] Unlike

in the microvasculature in vivo, each RBC deforms only once while passing through a pore

of the filter, which may limit its sensitivity. This measurement is known to be affected

primarily by the size and sphericity of individual RBCs, and is often confounded by the

plugging of pores by residual leukocytes and cellular clumps contaminating the tested

sample, and / or by even a small fraction of non-deformable RBCs.[54]

Ektacytometery evaluates RBC deformability by quantifying the degree of elongation of

RBCs suspended in a highly-viscous solution of polyvinylpyrrolidone (PVP) and subjected

to a well-defined shear stress field.[55-58] In this study, we used a microfluidic

ektacytometer (RheoScan-D, Fig. 1B) to measure RBC deformability at shear stresses

varying continually from 1 Pa up to 17 Pa (technical limit of the instrument).[42] In the

microfluidic ektacytometer, a laser beam is passed through a RBC sample flowing in a

microfluidic channel (0.2mm × 5mm × 40mm), and the change in the laser diffraction

pattern is measured to quantify the RBC elongation, and therefore RBC deformability.

Ektacytometry at low shear stresses (typically 3 Pa) is most sensitive to RBC membrane

properties, and at high shear stresses (e.g. 17 Pa) it primarily reflects so-called “maximal

deformability”, which is determined by the RBC geometrical parameters (i.e., the cell

surface area to volume ratio).[22, 36] The measurement of RBC deformability using
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ektacytometry is confounded by several important factors, including: (a) the viscosity of the

PVP solution is about 30-times larger than that of plasma, which is not physiological and

thus completely changes the mechanical response of RBCs to shear (i.e. RBCs subjected to

shear in plasma flip, not elongate), and (b) the hematocrit of RBC suspension tested is

extremely low (<0.5%) and thus ektacytometry cannot account for RBC deformations due to

cellular collisions (which are abundant in real blood flow).

Perfusion of the artificial microvascular network

Figure 2 illustrates the artificial microvascular network (AMVN) device used in this study.

[46, 47] This microfluidic device incorporated a network of capillary-size, 5 μm-deep

microchannels ranging in width from 5 to 70 μm, arranged in a pattern inspired by the

architecture of rat mesenteric microvasculature in vivo.[44, 45, 59] The fabrication of the

AMVN device and the methodology of the AMVN perfusion measurement has been

recently described in detail elsewhere.[46] To perform a measurement of the AMVN

perfusion, we passed a 40% hematocrit suspension of RBCs through the network under a

constant pressure difference between the inlet and the outlet (ΔP = 20 cmH2O), and

quantified the overall flow rate through the venule of the network (Fig. 2A). The value of

the AMVN perfusion rate reflects the effective ability of RBCs to undergo a wide range of

deformations as the cells pass through the network of artificial capillaries ranging in size

from 5 μm to 70 μm.[46] Figure 2 demonstrates the various deformations experienced by

RBCs flowing at a 40% hematocrit through the AMVN. These include the most basic

deformations of the cells into the characteristic bullet (Fig. 2D) and parachute (Fig. 2E)

shapes, as well as deformations in larger vessels (Fig. 2G) and in bifurcations (Fig. 2C and

2F) of the network due to cell-cell and cell-wall interactions. The primary advantage of the

AMVN device is that it directly measures the effective ability of RBCs to perfuse a

microvascular network, and performs this highly integrative measurement under

physiologically-relevant conditions, suspended in normal viscosity buffers or plasma at

physiological hematocrits, or even as whole blood. Much like in the AMVN, RBCs in vivo

must be able to deform in multiple ways to effectively perfuse the microvasculature and

perform their primary function of delivering oxygen to tissues. In this study, we used the

AMVN as a surrogate of the real microvasculature.

Comparison of the conventional deformability measurements with the ability of RBCs to
perfuse the AMVN

Figure 3 demonstrates the results of the comparison between the measurements of RBC

deformability performed using the two conventional techniques (micropore filtration and

ektacytometry) and the ability of the same RBCs to perfuse the AMVN. To perform this

comparison, we used three types of RBC samples with artificially altered overall

deformability: (1) healthy, fresh RBCs exposed to graded concentrations of glutaraldehyde,

(2) healthy, fresh RBCs exposed to graded concentrations of diamide, and (3) a mixture of

healthy, fresh RBCs with RBCs rendered non-deformable by exposure to 0.08%

glutaraldehyde. In all samples, RBCs were re-suspended in GASP buffer rather than in

autologous plasma to make sure that the AMVN perfusion measurements reflected RBCs

mechanical properties rather than viscosity of the suspending medium or RBC aggregation

behavior, and to maintain consistency with the previous work on ektacytometry and micro-
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pore filtration, most of which was done on RBCs re-suspended in various buffers rather than

in autologous plasma. For each RBC sample, all there measurements (micropore filtration,

ektacytometry and the AMVN perfusion) were performed simultaneously.

The measurement of RBC deformability using ektacytometry at both low (3 Pa) and high

(17 Pa) shear stresses declined nearly linearly with the increasing concentration of

glutaraldehyde (Fig. 3A). The value of RBC deformability measured using the micropore

filtration technique stayed relatively insensitive to the lower range of glutaraldehyde

concentrations (0-0.04%), and declined precipitously for the concentrations of

glutaraldehyde higher than 0.04% (Fig. 3A). The two techniques did not agree with each

other, but for the highest concentration of glutaraldehyde, 0.08%, at which point both

techniques showed nearly complete lack of deformability for the treated RBCs. The ability

of same RBCs to perfuse the AMVN declined linearly with the increasing concentration of

glutaraldehyde, to about 60% for the maximal concentration glutaraldehyde used in this

study (0.08%). Neither ektacytometry nor micropore filtration could accurately predict the

AMVN perfusion, with ektacytometry significantly overestimating and micropore filtration

underestimating (except for 0.08%) the effect of the glutaraldehyde-induced impairment of

RBC deformability on the network perfusion. For example, at the glutaraldehyde

concentration of 0.04%, ektacytometry showed a reduction in RBC deformability of 50% at

low shear stress (3 Pa) and 40% at high shear stress (17 Pa), whereas micropore filtration

showed only a 4% reduction in RBC deformability and the AMVN perfusion was reduced

by 14% for the same RBC sample (Fig. 3A).

Incubation of RBCs with increasing concentrations of diamide did not produce a measurable

change in RBC deformability as measured by the micropore filtration technique, and did not

affect the ability of same RBCs to perfuse the AMVN (Fig. 3B). In this sense, the micropore

filtration and the AMVN perfusion measurements were in excellent agreement with each

other. In sharp contrast, the measurement of deformability of the same RBCs performed

using ektacytometry declined precipitously starting at 0.02% diamide concentration,

reaching its minimal level plateau of 50% for low (3 Pa) and 80% for high (17 Pa) shear

stresses at concentrations higher than 0.06% (Fig. 3B). The ektacytometry measurements

could not predict the ability of the same RBCs to perfuse the AMVN for any concentration

of diamide above 0.02%.

In addition to the samples in which the deformability of all RBCs was affected by the graded

exposure to either glutaraldehyde or diamide, we also investigated how well ektacytometry

and micropore filtration could predict the AMVN perfusion for samples comprising a

mixture of deformable RBCs and non-deformable RBCs (Fig. 3C). To prepare these

samples we mixed healthy, normal RBCs with varying proportions of RBCs hardened by the

treatment with 0.08% glutaraldehyde, the maximal concentration of glutaraldehyde used in

this study that resulted in nearly complete loss of deformability by treated RBCs as

measured using ektacytometry and micropore filtration (Fig. 3A). The deformability of

RBCs in the mixed samples declined linearly with the increasing fraction of non-deformable

RBCs as measured using either micropore filtration or ektacytometry at high and low shear

rates (Fig. 3C). Both ektacytometry and micropore filtration were able to predict the ability

of the mixed samples to perfuse the AMVN very well, but only up to the 50:50 ratio of
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deformable and non-deformable RBCs. An increase in the fraction of non-deformable RBCs

to 100% resulted in only about 8% reduction of AMVN perfusion, while conventional

techniques showed a significant further decline of RBC deformability – 38% for

ektacytometry at low (3 Pa) shear rate, 47% for ektacytometry at high (17 Pa) shear rate, and

52% for micropore filtration (Fig. 3C).

Discussion

The deformability of RBCs is a multifactorial property that depends on membrane elasticity,

cytoplasmatic viscosity, volume-to-surface ratio and the tank treading motion, with each of

these variables affected differently by various pathophysiological processes and by the

treatments used in this study.[60, 61] Our results suggest that neither ektacytometry nor

micropore filtration can reliably predict the ability of RBCs with impaired deformability to

perfuse a network of capillary microchannels (Fig. 3). Micropore filtration and

ektacytometry evaluate two rather different aspects of RBC rheology – micropore filtration

measures only the ability of RBCs to undergo folding deformations (relevant primarily to

their entry into narrow capillaries), whereas ektacytometry measures only the ability of

RBCs to elongate when subjected to a very well defined shear stress field in a highly viscous

environment. The primary advantage of our approach over these two commonly used

techniques is that in the AMVN RBCs experience a much wider spectrum of deformations,

which includes the folding deformations in capillaries and the shear-induced deformations in

larger vessels, and their properties are tested while suspended in normal-viscosity buffers (or

even in blood plasma) at hematocrits that are physiologically-high and highly variable

across vessels of different size (much like in real microvasculature[62-65]).[45, 46] In this

sense, the measurement of AMVN perfusion rate provides a more realistic assessment of

RBC rheology and (because the AMVN evaluates RBC mechanical properties directly in

terms of microvascular perfusion) the results of this assessment should be easier to interpret

clinically and may have more significant diagnostic implications.[22]

One of the most important differences between the conventional techniques for measuring

RBC deformability, and the AMVN perfusion measurement is the biomimetic ability of the

AMVN to resist the detrimental effect of plugging of individual capillaries by non-

deformable cells on the overall network perfusion. In many physiologically relevant

conditions (e.g. sickle cell disease, malaria, blood transfusion), the distribution of

deformability throughout the RBC population is not homogeneous, with only a fraction of

all RBCs sustaining a significant impairment of their mechanical properties. In our

experiments with samples containing mixtures of healthy, normal RBCs and RBCs rendered

non-deformable by treatment with 0.08% glutaraldehyde (see Fig. 3A micropore filtration)

[45] the AMVN perfusion for these samples declined almost linearly with the increasing

fraction of non-deformable RBCs up to 50%, in good agreement with the two conventional

techniques (Fig. 3C). The subsequent increase of the fraction of non-deformable cells from

50% to 100% however, resulted in only an 8% reduction of the AMVN perfusion, whereas

there was a further decline in RBC deformability of 52% as measured by micropore

filtration, and a 38% decline for low shear (3 Pa) and a 47% decline for high shear (17 Pa)

ektacytometry (Fig. 3C). Overall, the AMVN perfusion declined by less than 50% before

reaching a plateau, suggesting that the flow of blood through the network was diverted to the
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larger microchannels, bypassing the plugged capillaries.[45] This behavior reflects a similar

microcirculatory dynamics observed in vivo, where in the AMVN as in mammalian

microcirculatory beds, RBCs have multiple pathways through which they can pass even if

smaller vessels are occluded by less deformable RBCs.[53, 66]

The main objective of this study was to investigate whether the measurements of RBC

deformability performed using the two conventional techniques (ektacytometry and micro-

pore filtration) could predict the ability of same RBCs to perfuse an artificial microvascular

network. In this context, we used the AMVN with a particular architecture (Fig. 2B) as a

representative example of such a network. A significant alteration of the network

architecture would affect the specifics of the blood flow dynamics within the network and

therefore the measurement of the network perfusion. This feature is in fact an important

advantage of our approach because the architecture of the AMVN could, in principle, be

designed to mimic the microvasculature of a target organ of interest (e.g. kidney, brain,

heart) and thus enable an organ-specific prediction of the impact of RBC mechanical

properties on microvascular perfusion. We believe, however, the results of our current study

and conclusions we drew from them in this paper are general in nature and therefore will

hold true with respect to a reasonable variation of the network architecture. A separate future

study designed to measure the effect of systematic variations in the network architecture on

the perfusion measurement would be able to test this hypothesis definitively.

Glutaraldehyde is a non-specific protein cross-linker that affects proteins present in all three

structural regions of a mature RBC, including those in the cytosol, as well as the cytoskeletal

and transmembrane proteins.[48, 50, 51, 67-70] Diamide is a sulfhydryl-oxidizing reagent

that exclusively cross-links spectrin via the formation of disulfide bonds within the RBC

cytoskeleton.[48, 71] Controlled exposure to glutaraldehyde and / or diamide is widely used

in the literature to mimic the pathophysiological impairment of RBC mechanical properties

occurring naturally, particularly in validation and sensitivity studies of new RBC

deformability measurement techniques.[36, 42, 43, 45, 48, 53, 71] A high sensitivity of a

technique for measuring RBC deformability to either of these chemical treatments, however,

may not necessarily mean a similarly high sensitivity to the other treatment (Fig. 3A-B).

In the ektacytometer, the deformability of RBCs is measured by quantifying the diffraction

pattern of a laser beam passing through a ~0.5% hematocrit suspension of RBCs in a high-

viscosity (30 mPa·s) solution of poly(vinylpyrrolidone). When subjected to shear stress in

such a highly viscous environment (>10x viscosity of plasma), RBCs do not flip, but rather

elongate in response, affecting the laser diffraction pattern and the readout of the technique.

Our measurements showed that RBC elongation under the conditions of ektacytometry is

highly sensitive to both the treatment of RBCs with glutaraldehyde (Fig. 3A) and with

diamide (Fig. 3B). This was not however the case for either micropore filtration or the

AMVN perfusion measurements.

In micropore filtration, the deformability of RBCs is measured by quantifying the time it

takes a fixed volume of a dilute suspension of RBCs (in saline or another normal viscosity

aqueous buffer solution) to pass through 5-μm pores of a thin membrane. To pass through

the smaller pores, each RBC in the suspension must undergo a single folding deformation.
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Under the conditions of the micropore filtration assay, the ability of RBCs to fold into the

capillary-size pores declined mildly after the treatment with the lowest concentrations of

glutaraldehyde. At the concentrations higher than 0.04%, the RBC mechanical properties

deteriorated precipitously, losing nearly all of their original deformability at the maximal

exposure (Fig. 3A) (in complete agreement with previous studies).[45, 53] In a striking

contrast with ektacytometry and despite the evident sensitivity to glutaraldehyde, the ability

of treated RBC to negotiate the capillary-size pores in the micropore filtration assay was

completely unaffected by the treatment with diamide (Fig. 3B). Similarly, the ability of

RBCs to perfuse the AMVN declined linearly with increasing concentration of

glutaraldehyde (Fig. 3A), but remained completely unaffected by exposure of RBCs to

diamide over the entire range of concentrations (Fig. 3B). A possible explanation of our

observations is that spectrin-specific cross-linking of the cytoskeleton affects the ability of

RBCs to elongate in response to applied shear stress when suspended in a high-viscosity

buffer (ektacytometry), but does not affect the ability of RBCs to deform when passing

through capillary-size pores (micropore filtration) and traversing a network of capillary

microchannels (AMVN). Our findings are consistent with previous studies, also reporting

differential sensitivity of various in vitro measurement techniques (including ektacytometry

and micropore filtration) to the treatments with glutaraldehyde and diamide.[48, 71, 72]

By the same token, it is highly unlikely that treating normal, healthy RBCs with either

glutaraldehyde or diamide represents any of the changes in RBC mechanical properties

occurring naturally as a functional manifestation of genetic abnormalities, due to metabolic

alterations, in response to a changing biochemical microenvironment or as a result of a

pathological process. In this context, high sensitivity of a particular measurement technique

to the chemically induced impairment of RBC deformability does not necessarily mean a

similar level of sensitivity to the real changes occurring in vivo. For example, Berezina et al.

used the micropore filtration technique to quantify the progressive deterioration of RBC

mechanical properties during a 6-week hypothermic storage, and found that by day 42 of

storage RBC deformability was 46% lower than for fresh cells.[25] In a more recent study,

Henkelman et al. used ektacytometry to investigate the evolution of RBC mechanical

properties during 7 weeks of hypothermic storage. They found that deformability of stored

RBCs did not change at the shear stress of 3.9 Pa throughout storage. At a higher shear

stress of 50 Pa, the deformability of stored RBCs in the beginning of storage (3 days after

donation) was about 9% higher than for fresh RBCs, but then gradually decreased to about

2% higher than for fresh RBCs by the end of storage.[40] For comparison, in our own recent

study we measured a 26% ± 4% decline in the ability of RBCs to perfuse the AMVN after a

41-day hypothermic storage.[46]

In our measurements performed on the same RBC samples simultaneously, micropore

filtration was significantly less sensitive to the impairment of RBC deformability caused by

the treatment with glutaraldehyde than ektacytometry (Fig. 3A); unlike ektacytometry,

micropore filtration was also completely insensitive to the treatment with diamide (Fig. 3B).

Using these data it is logical to make a conclusion that ektacytometry is a more sensitive

technique for measuring RBC deformability than micropore filtration. Yet, when used to

quantify the deterioration of RBC mechanical properties caused by the same biological
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process (storage lesion), micropore filtration reported a significant loss of nearly half of

RBC deformability by the end of storage,[25] while the ektacytometry measurements

suggested a slight improvement with respect to fresh RBCs.[40] The marked disagreement

between the sensitivity of the two techniques to the chemically-induced and the natural

impairment of RBC mechanical properties highlights the danger of using the treatment with

glutaraldehyde and/or diamide as the benchmark when developing, optimizing and

validating novel techniques for measuring RBC deformability. More studies focused on the

side-by-side comparison of various RBC deformability measurement techniques, and more

representative models of the natural RBC deformability impairment for calibrating these

techniques in vitro are urgently needed.

Conclusion

This study compared the measurements of RBC deformability performed using two very

commonly employed techniques, micropore filtration and ektacytometry, and investigated

how well these measurements could predict the ability of same RBCs to perfuse an artificial

microvascular network (AMVN). The two conventional techniques did not agree with each

other, and could not accurately predict the ability of the RBCs with artificially impaired

deformability to perfuse the AMVN. Our study reinforces the notion that RBC deformability

is not a unique property, but rather a property that is operationally defined by the

measurement methodology. This seemingly obvious realization highlights the need for any

study of RBC deformability to employ multiple measurement methods in order to benefit

from the descriptive strengths of the different technologies and perform a multi-parameter,

comprehensive evaluation of RBC mechanical response to deforming forces. A vast

majority of RBC deformability studies published to date base their conclusions on a single

measurement method. While the insights gleaned from these studies are certainly valuable,

they may give a one-dimensional, biased assessment because of the attempt to reduce the

multifaceted nature of such a complex phenomenon as RBC deformability to a single

numerical value. One way towards a much more balanced and potentially more clinically

meaningful assessment of RBC mechanical properties is to invest a significant research

effort into the development and careful validation of novel biomimetic techniques and

devices that can test RBC behavior in the mechanical microenvironment closely mimicking

the dynamics of blood flow in the microvasculature. We speculate that the measurement of

perfusion of an artificial microvascular network (AMVN) to evaluate the mechanical

properties of RBCs is a significant step towards this important goal.
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Figure 1.
Illustration of the two conventional technologies commonly used to evaluate RBC

deformability. (A) In the micro-pore filtration technique, RBCs are passed through 5 μm

pores of a polycarbonate filter. The time it takes a pre-set volume of the RBC suspension to

pass through the filter (filtration time) is measured to evaluate the ability of RBCs to

undergo folding deformations when passing through narrow openings. (B) In an

ektacytometer (RheoScan-D), a dilute suspension of RBCs in a highly viscous PVP solution

is passed through a stright channel at various shear stresses. A laser beam is passed

perpendicularly through the RBC suspension and the change in the diffraction pattern is

quantified via the calculation of the elongation index to evaluate RBC deformability.
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Figure 2.
Illustration of the artificial microvascular network (AMVN) device. (A) In the AMVN

device, a 40% hematocrit suspension of RBCs is passed through a network of artificial

capillaries under a constant pressure difference between the inlet and the outlet, and the

overall flow rate in the venule of the AMVN is quantified. (B) The AMVN perfusion rate

evaluates the effective ability of RBCs to undergo a variety of deformations as they pass

through the network of artificial capillaries ranging in size from 5 μm to 70 μm. (C) RBCs

deform as a result of collisions with other cells and vessel walls at capillary bifurcations. (D)

RBCs passing through the narrowest capillaries assume the characteristic bullet-like shape.

(E) RBCs deform into the parachute shape in larger capillaries. (F) RBCs experience

significant deformations due to the convergence of two streams moving with different

velocities. (G) In largest vessels of the AMVN, RBCs undergo shear-induced deformations

as well as deformations caused by multiple collisions with other cells in bulk flow. The flow

direction is from left to right in all images. Scale bars are 10μm.
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Figure 3.
A comparison of the normalized deformability indices measured using different

methodologies for RBCs incubated with graded concentrations of (A) glutaraldehyde and

(B) diamide, and (C) for reconstituted samples containing a mixture of healthy normal cells

and varying percentage of non-deformable RBCs hardened by incubation with 0.08%

glutaraldehyde. Each data point represents mean ± standard deviation of n = 4 samples (*

p<0.05 with respect to every other measurement technique).
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