3,033 research outputs found

    Adhesion-induced phase separation of multiple species of membrane junctions

    Full text link
    A theory is presented for the membrane junction separation induced by the adhesion between two biomimetic membranes that contain two different types of anchored junctions (receptor/ligand complexes). The analysis shows that several mechanisms contribute to the membrane junction separation. These mechanisms include (i) the height difference between type-1 and type-2 junctions is the main factor which drives the junction separation, (ii) when type-1 and type-2 junctions have different rigidities against stretch and compression, the ``softer'' junctions are the ``favored'' species, and the aggregation of the softer junction can occur, (iii) the elasticity of the membranes mediates a non-local interaction between the junctions, (iv) the thermally activated shape fluctuations of the membranes also contribute to the junction separation by inducing another non-local interaction between the junctions and renormalizing the binding energy of the junctions. The combined effect of these mechanisms is that when junction separation occurs, the system separates into two domains with different relative and total junction densities.Comment: 23 pages, 6 figure

    A Stable and Accurate Marker-less Augmented Reality Registration Method

    Get PDF
    Markerless Augmented Reality (AR) registration using the standard Homography matrix is unstable, and for image-based registration it has very low accuracy. In this paper,we present a new method to improve the stability and the accuracy of marker-less registration in AR. Based on the VisualSimultaneous Localization and Mapping (V-SLAM) framework,our method adds a three-dimensional dense cloud processingstep to the state-of-the-art ORB-SLAM in order to deal withmainly the point cloud fusion and the object recognition. Ouralgorithm for the object recognition process acts as a stabilizer toimprove the registration accuracy during the model to the scenetransformation process. This has been achieved by integrating theHough voting algorithm with the Iterative Closest Points(ICP)method. Our proposed AR framework also further increasesthe registration accuracy with the use of integrated cameraposes on the registration of virtual objects. Our experiments show that the proposed method not only accelerates the speed of camera tracking with a standard SLAM system, but also effectively identifies objects and improves the stability of marker-less augmented reality applications

    Numerical study of O(a) improved Wilson quark action on anisotropic lattice

    Get PDF
    The O(a)O(a) improved Wilson quark action on the anisotropic lattice is investigated. We carry out numerical simulations in the quenched approximation at three values of lattice spacing (aσ1=1a_{\sigma}^{-1}=1--2 GeV) with the anisotropy ξ=aσ/aτ=4\xi=a_{\sigma}/a_{\tau}=4, where aσa_{\sigma} and aτa_{\tau} are the spatial and the temporal lattice spacings, respectively. The bare anisotropy γF\gamma_F in the quark field action is numerically tuned by the dispersion relation of mesons so that the renormalized fermionic anisotropy coincides with that of gauge field. This calibration of bare anisotropy is performed to the level of 1 % statistical accuracy in the quark mass region below the charm quark mass. The systematic uncertainty in the calibration is estimated by comparing the results from different types of dispersion relations, which results in 3 % on our coarsest lattice and tends to vanish in the continuum limit. In the chiral limit, there is an additional systematic uncertainty of 1 % from the chiral extrapolation. Taking the central value γF=γF\gamma_F=\gamma_F^* from the result of the calibration, we compute the light hadron spectrum. Our hadron spectrum is consistent with the result by UKQCD Collaboration on the isotropic lattice. We also study the response of the hadron spectrum to the change of anisotropic parameter, γFγF+δγF\gamma_F \to \gamma_F^* + \delta\gamma_F. We find that the change of γF\gamma_F by 2 % induces a change of 1 % in the spectrum for physical quark masses. Thus the systematic uncertainty on the anisotropic lattice, as well as the statistical one, is under control.Comment: 27 pages, 25 eps figures, LaTe

    Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum

    Get PDF
    We present results for the mass spectrum of ccˉc{\bar c} mesons simulated on anisotropic lattices where the temporal spacing ata_t is only half of the spatial spacing asa_s. The lattice QCD action is the Wilson gauge action plus the clover-improved Wilson fermion action. The two clover coefficients on an anisotropic lattice are estimated using mean links in Landau gauge. The bare velocity of light νt\nu_t has been tuned to keep the anisotropic, heavy-quark Wilson action relativistic. Local meson operators and three box sources are used in obtaining clear statistics for the lowest lying and first excited charmonium states of 1S0^1S_0, 3S1^3S_1, 1P1^1P_1, 3P0^3P_0 and 3P1^3P_1. The continuum limit is discussed by extrapolating from quenched simulations at four lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the observed values in nature and other lattice approaches. Finite volume effects and dispersion relations are checked.Comment: 36 pages, 6 figur

    'Spillout' effect in gold nanoclusters embedded in c-Al2O3(0001) matrix

    Full text link
    Gold nanoclusters are grown by 1.8 MeV Au^\sup{2+} implantation on c-Al\sub{2}O\sub{3}(0001)substrate and subsequent air annealing at temperatures 1273K. Post-annealed samples show plasmon resonance in the optical (561-579 nm) region for average cluster sizes ~1.72-2.4 nm. A redshift of the plasmon peak with decreasing cluster size in the post-annealed samples is assigned to the 'spillout' effect (reduction of electron density) for clusters with ~157-427 number of Au atoms fully embedded in crystalline dielectric matrix with increased polarizability in the embedded system.Comment: 14 Pages (figures included); Accepted in Chem. Phys. Lett (In Press

    Hydrodynamics of Spatially Ordered Superfluids

    Full text link
    We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional modes due to the superfluid motion of point defects (vacancies and interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication in Phys. Rev.

    Propagation inhibition and wave localization in a 2D random liquid medium

    Full text link
    Acoustic propagation and scattering in water containing many parallel air-filled cylinders is studied. Two situations are considered and compared: (1) wave propagating through the array of cylinders, imitating a traditional experimental setup, and (2) wave transmitted from a source located inside the ensemble. We show that waves can be blocked from propagation by disorders in the first scenario, but the inhibition does not necessarily imply wave localization. Furthermore, the results reveal the phenomenon of wave localization in a range of frequencies.Comment: Typos in Fiures are correcte

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software

    Effective theory of the Delta(1232) in Compton scattering off the nucleon

    Full text link
    We formulate a new power-counting scheme for a chiral effective field theory of nucleons, pions, and Deltas. This extends chiral perturbation theory into the Delta-resonance region. We calculate nucleon Compton scattering up to next-to-leading order in this theory. The resultant description of existing γ\gammap cross section data is very good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent polarizabilities αp\alpha_p and βp\beta_p.Comment: 29 pp, 9 figs. Minor revisions. To be published in PR

    A simple derivation of level spacing of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter

    Full text link
    In this paper, we investigate analytically the level space of the imaginary part of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter by the Padmanabhan's method \cite{Padmanabhan}. Padmanabhan presented a method to study analytically the imaginary part of quasinormal frequencies for a class of spherically symmetric spacetimes including Schwarzschild-de Sitter black holes which has an evenly spaced structure. The results show that the level space of scalar and gravitational quasinormal frequencies for this kind of black holes only depend on the surface gravity of black-hole horizon in the range of -1 < w < -1/3, respectively . We also extend the range of ww to w1w \leq -1, the results of which are similar to that in -1 < w < -1/3 case. Particularly, a black hole with a deficit solid angle in accelerating universe will be a Schwarzschild-de Sitter black hole, fixing w=1w = -1 and ϵ2=0\epsilon^2 = 0. And a black hole with a deficit solid angle in the accelerating universe will be a Schwarzschild black hole,when ρ0=0\rho_0 = 0 and ϵ2=0\epsilon^2 = 0. In this paper, ww is the parameter of state equation, ϵ2\epsilon^2 is a parameter relating to a deficit solid angle and ρ0\rho_0 is the density of static spherically symmetrical quintessence-like matter at r=1r = 1.Comment: 6 pages, Accepted for publication in Astrophysics & Space Scienc
    corecore