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Abstract—Markerless Augmented Reality (AR) registration
using the standard Homography matrix is unstable, and for
image-based registration it has very low accuracy. In this paper,
we present a new method to improve the stability and the
accuracy of marker-less registration in AR. Based on the Visual
Simultaneous Localization and Mapping (V-SLAM) framework,
our method adds a three-dimensional dense cloud processing
step to the state-of-the-art ORB-SLAM in order to deal with
mainly the point cloud fusion and the object recognition. Our
algorithm for the object recognition process acts as a stabilizer to
improve the registration accuracy during the model to the scene
transformation process. This has been achieved by integrating the
Hough voting algorithm with the Iterative Closest Points(ICP)
method. Our proposed AR framework also further increases
the registration accuracy with the use of integrated camera
poses on the registration of virtual objects. Our experiments
show that the proposed method not only accelerates the speed
of camera tracking with a standard SLAM system, but also
effectively identifies objects and improves the stability of marker-
less augmented reality applications.
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I. INTRODUCTION

Augmented Reality (AR) is the technology of mixing real
scenes with virtual information. As an emerging field with
huge application potentials, AR technology enhances human
perception of the world and adds novel interactions between
human and computers. Azuma [1] has defied that AR is an in-
tegration of the virtual world and the real world with real-time
interactions via three-dimensional registrations. Therefore, a
stable real-time registration performance between the real and
the virtual world via 3D mapping and objection recognition is
at the core of the marker-less AR technology.

The rapid development in software and hardware technolo-
gies in virtual reality and computer vision has made the
AR technology applicable to a wider range of applications
from medicine, military,entertainment to many others [2] [3].
Virtual registrations, however, remain a challenge issue in AR
research. Initially the Simultaneous Localization and Mapping
(SLAM) algorithm has been used mainly in robotics for
positioning robots in unknown environments [4] [S]. More
recently, researchers have started to utilize the state-of-the-art

SLAM for virtual information and virtual object registrations
in AR. Davison et. al. [6] [7] have used a monocular camera
to achieve fast 3D modeling and camera pose tracking in
unknown environments, which has shown potentials of the
SLAM algorithm to be used in many other applications,
such as AR. Klein [8] has applied a SLAM algorithm to
create three-dimensional point clouds, and Reitmayr [9] has
demonstrated the use of SLAM and sensor fusion techniques
to improve marker-less tracking for virtual object registrations.

A method for computing the homography matrix in AR
systems for three-dimensional registrations has been shown
in [10] [11]. Although simple and efficient, this method has
to detect coordinates of four points of a plane in order to
determine the camera pose (translation and rotation) w.r.t.
the world coordinate system. In spite of its simplicity and
efficiency, the fundamental principle of the algorithm was
based on the 2D plane registration. Hence, the four points
detection algorithm is prone to the error of misplacement of
virtual objects during the registration process, resulting in the
virtual objects being unstable with distracting visual artifacts
(i.e. flashing visual effects). To deal with this issue, previous
approaches [8] [9] have attempted to make the use of three-
dimensional map information generated by a SLAM algorithm
to improve the registration accuracy. Despite great stride has
been made in recent years regarding the improvement to AR
techniques, both in software and hardware techniques, the
stability and performance issues in AR registration remain as
an unsolved problem.

In this paper, we present a new method to improve the
registration between the real world and the virtual world
and also the tracking of virtual objects. Our method also
utilize the 3D map information generated by SLAM. Because
of the problem of using sparse point clouds for identifying
objects, RGBD sensor can used to achieve a dense map. The
KinectFusion framework [12] is well known for the real-time
reconstruction of dense map obtained from RGBD sensors,
then the ElasticFusion algorithm [13] can be used to achieve
the fast and accurate real time reconstruction. However, the
both algorithms must rely on GPU acceleration for real-time
performance, demanding higher hardware hardware require-
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ments than normal commodity PC and real-time software build
in the CPU are still mainly working with sparse maps [8] [14].
We develop our new approach based on our observations
that, although RGBD images can be used [15], the advantage
of the depth information provided by the RGBD image has
only been used during initialization step. During the map
construction process, however, the map is still using the con-
ventional ORB feature points to built the map, but did not use
the depth of information. Therefore, we design our algorithm
by adding a real-time dense map to the sparse point clouds
to increase the accuracy of the registration. Furthermore, we
integrate the Hough voting [16] algorithm with the SLAM
framework for detecting and recognizing objects, and add
the Iterative Closest Points(ICP) [17] algorithm to improve
the precision of the transformation matrix. Not only can our
proposed new algorithm accurately detect the object, it can
also located the exact location of the object. Finally, we use the
precise positioning function of the Visual SLAM (V-SLAM)
and the transformation matrix to set camera poses in order to
render the coordinate system under the camera frame for the
three-dimensional registration of the virtual object. The main
contribution of this paper is to add a real-time dense map to
improve the Hough voting algorithm and we have developed
a novel approach that can effectively produce stable and high
registration accuracy for virtual reality fusion in AR.

II. AR SYSTEM OVERVIEW

Our proposed new AR framework consists of two software
modules: a V-SLAM module and a registration module as
shown in Fig. 1 for an overview of the system. Tracking in
the V-SLAM module is for locating the camera position by
processing each image frame and decide when to insert a new
keyframe. Firstly, the feature matching process is initialized
with the previous frame and the Bundle Adjustment (BA) [18]
is used to optimize the camera poses. While the 3D map is
initialized and the map is successfully created by the V-SLAM
module, the registration module is called. The RGBD data is
added to fuse the point cloud by the previously calculated
pose to produce a dense map. We used the three-dimensional
model to identify the object and get the transformation matrix.
After this process together with the V-SLAM, the camera
position is obtained and the pose is converted to the OpenGL
coordinate system under the ModelView matrix. The final step
is to register the 3D virtual object to the real world scene to
achieve augmented reality.

A. Tracking

Tracking in our system is achieved via a visual simultaneous
mapping and tracking strategy by extracting and matching the
Oriented Features From Accelerated Segment Test (FAST) and
the Rotated Binary Robust Independent Elementary Features
(BRIEF) (ORB) [19]. We compute two models:i) a homog-
raphy matrix that is used to compute a planar scene; ii) a
fundamental matrix that is used to compute a non-planar scene.
Each time the two matrices are calculated and scores (M = H
for the homography matrix and M = F' for the fundamental
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Fig. 1. System overview shows the workflow of our proposed AR framework
and the components of the system

matrix) are also calculated as shown in equation 1. The scores
are used to determine which model is more suitable for the
camera posture.
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where d,. and d.. is the measure of symmetric transfer
errors [20],7}, is the outlier rejection threshold based on the
X2, I is equal to T},, x. is the features of the current frame,
and x, is the features of the reference frame. The BA is used
to optimize camera poses, which gets a more accurate camera
position as shown in the following equation:
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where R € SO? is the rotation matrix, ¢ € R3? is the
translation vector, X* € R? is a three-dimensional point in
space,r’ € R? is the key point, and p is the Huber cost
function. Sigma item is the covariance matrix associated to
the key point and 7 is the projection function.




After obtaining the accurate position estimation of the cam-
era, the three-dimensional map of the point cloud is obtained
by triangulating the key frames through the camera poses, and
finally the local BA is used to optimize the map. A detailed
description of the approach is given in [14].

B. Dense mapping and 3D object recognition

In the dense map building process, we use a Kinect sensor
to extract RGBD information, so that V-SLAM poses can be
used to combine point clouds. The core of this method is to
add a dense point cloud processing thread when the system
is at the initialization stage, which creates a visual window
for displaying a dense map. The map is not used to capture
each frame of the image, but only with key frames. When the
key frames of the system are updated, the RGB and the depth
information of the current frame are extracted. Therefore, the
point clouds are reconstructed from key-frame images. The
pose of the current frame can be also obtained when processing
the key frames. After that, we can transform the point cloud of
the corresponding key frame into the same coordinate system
according to the pose of the current key frame to generate a
global point cloud map.

In our AR system, when the V-SLAM system is in the
building mode, the object recognition is not performed. Object
recognition is only running in the location mode. The Hough
voting method is used for three-dimensional object recognition
to increase the performance and accuracy of the ICP algorithm
that maps the model to the corresponding model of the trans-
formation matrix. The recognition results are shown in Fig
2. Fig. 2(a) shows the key points obtained using the uniform
sample, whereas Fig. 2 (b) shows the descriptors of the model
and the scene w.r.t. the matching of the corresponding points,
and Fig. 2(c)shows the result of the final match. It can be
seen that the algorithm can effectively identify the object. The
details of the specific process is listed in Algorithm 1.

The virtual object is finally registered in the real world,
which go through a series of coordinate system transfor-
mations (from the world coordinate system to the camera
coordinate system to the crop coordinate system, and to the
screen coordinate system). The transformation sequences can
be described by equation 5 from left to right: the world
coordinate system is transformed into the camera coordinate
system by a rotation matrix Rsxs and a translation matrix
T35 1. Those matrices are constructed by the camera’s position
and the detected plane information. Then the camera coordi-
nate system is then transformed into the screen coordinate
system (u,v) by the focal length (f,, f,)and the principal
point (d,,d,). These parameters are obtained by the camera
calibration. Finally, the virtual object is registered on the
screen to the real world.
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Fig. 2. Improved Hough voting (the red region is the matched model, the
yellow region is the original model and the blue dots are the key points)

III. EXPERIMENT AND EVALUATION

Our experiment is run under a Ubuntu 14.04 system, CPU
clocked at 2.3GHz, 8GB memory and NVIDIA GeForce GTX
960MB graphics card. The camera resolution is 640 by 480
pixels at 30 Hz. Fig. 3 (a) and (b) show the system identifies
and registers a virtual table for a real table. Fig 3 (c) shows the
system identifies and registers virtual laptop for a real laptop.
Fig. 4 (a) also shows the identification and registration of the
virtual tables. Fig. 4 (b) and (c) show the identification and
registration of the 3D model reconstruction from a real chair.



Algorithm 1 Improved Hough vote
1: Using the nearest neighbor method to calculate the surface
normal of the model and the scene separately. Calculating
the surface normal can be done by solving eigenvectors
and eigenvalues of a covariance matrix, which is created
by neighboring elements of query points.The normal of
each point can be obtained by equations 3 and 4;
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where C is the covariance matrix,k is the number of
point neighbors considered in the neighborhood of P;, P
represents the 3D centroid of the nearest neighbors,\;is
the j-th eigenvalue of the covariance matrix, and the j-th
eigenvector.

2: The Uniform Sampling algorithm is used to calculate the
key points of the model and the scene. The Uniform
Sampling algorithm mainly creates a 3D voxel grid, which
calculates the centroid of each mesh within the grid, using
the centroid of each grid to represent the entire point
cloud;

3: Using the above-mentioned surface normal and the key
points to calculate the Signature of Histograms of Ori-
entations (SHOT) descriptors for models and scenes. A
detailed description of the approach is given in [21];

4: By calculating the similarity(squared distance) between
the model and the scene description point, the correspond-
ing description points can be found;

5: then using the Hough voting to identify the object and
calculate the corresponding transformation matrix;

6: The transformation matrix in step 5 is further processed
by ICP to obtain a more accurate transformation matrix.
=0

As can be seen that the tracking,recognition and registration
have been effectively performed correctly.

A. Object Recognition Analysis

The experiment is to split the model in the scene, and then
match it with the original scene, then get the transformation
matrix as the unit matrix. We give a fixed degree or a fixed
translation distance on the basis of the unit matrix to obtain a
new matrix, which called the reference matrix that is used in
the experimental comparison. Then the model is multiplied
by the reference matrix to get the new model. By using
this new model, we use the Hough voting algorithm and
the improved Hough voting algorithm respectively to obtain
the transformation matrix of the model transformation to the
scene. Here we use the similarity of the matrix (equation
6) for the rotation matrix and the European distance for the
translation matrix respectively. Experimental results are shown
in Fig. 5. Fig 5(a) shows the rotation angle fixed at 45 degrees,
the abscissa indicates the increased distance (xyz components

Fig. 3. AR tracking ,recognition and registration

while increasing the same distance). The ordinate represents
the error between the calculated and ground truth values. In
Fig.5 (b), the translation component is fixed at 0.lcm, the
abscissa represents the increased degree, and the ordinate
represents the similarity. Although we can see that the rotation
matrix does not change substantially from Fig.5 (b), the error
of the translation matrix obtained by our improved method in
Fig.5 (a) is much smaller.
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Fig. 4. AR tracking ,recognition and registration
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where A and B are the means of matrix elements,mn is the m
rows and n columns of the matrix,r is correlation coefficient
of the matrix(-1 and 1 represent exactly the same matrix, O
represent the two matrices are completely different).
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B. Registration Error Analysis

A comparison method is used with fixed camera positions
to evaluate the robustness of our proposed method. The three-
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Fig. 5. Recognition Analysis

dimensional registration of the virtual object is carried out
by using the described method and the standard homogra-
phy matrix method. Six components of the three-dimensional
registration results are analyzed. The difference between the
transformation matrix of the current frame and the correspond-
ing component of the transformation matrix of the previous
frame is used as the basis for the comparison. The results
are shown in Fig.6 and Fig. 7, where Translate x, Translate y
and Translate z are the errors of the translation components,
respectively, and Rotate x, Rotate y, Rotate z are relative to
the X, y, z axis of the rotation component errors which are
obtained by subtracting the previous frame from the current
frame. The result of the rotation component is obtained by
dividing the respective components with the dot product of the
corresponding coordinate axis, and the translation component
is the result obtained by the normalization process.

In Fig. 6 and Fig.7, the red curves are the results of using
only the homography matrix, whereas the blue curves are the
results of the new registration method used in this paper. As it
can be seen from Fig. 6 and Fig.7, the use of the homography
matrix method to register the virtual objects has produced
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Fig. 6. Registration error

large registration errors that are equivalent to the virtual object
registration instability. However, the new method tested on
each rotation component has been kept the error in a small
range below 0.5 degrees. The errors with Translate x, Translate
y and Translate z are also small similar to the result of the
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Fig. 7. Registration error

rotation components.

Through the experimental results, it can be seen that the
new method produces stable virtual registration and solve the
flickering phenomenon in the virtual reality registration, hence,
improves the stability of the AR system.



IV. CONCLUSIONS AND FUTURE WORK

This paper presents a stable and high performance realis-
tic tracking and recognition method in AR based on three-
dimensional map information generated by V-SLAM. The
method allows the tracking and the registration of virtual
objects to ensure a stable and real-time performance of marker-
less AR applications. Our proposed method is faster than the
standard methods and is able to achieve more accurate regis-
tration results compared with the state-of-the-art approaches.
The experimental results show that the proposed method can
effectively suppress the virtual object jittering, having a higher
tracking accuracy with good performance.

At present, we are using object recognition based on model
recognition and only one object can be identified for each
recognition. Therefore, we will consider multimodel 3D object
recognitions based on deep learning in our future work.
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