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The O(a) improved Wilson quark action on the anisotropic lattice is investigated. We carry out numerical
simulations in the quenched approximation at three values of lattice spacing (as

2151 –2 GeV! with the
anisotropyj5as /at54, whereas andat are the spatial and temporal lattice spacings, respectively. The bare
anisotropygF in the quark field action is numerically tuned by the dispersion relation of mesons so that the
renormalized fermionic anisotropy coincides with that of the gauge field. This calibration of the bare anisot-
ropy is performed to the level of 1% statistical accuracy in the quark mass region below the charm quark mass.
The systematic uncertainty in the calibration is estimated by comparing the results from different types of
dispersion relation, which gives 3% on our coarsest lattice and tends to vanish in the continuum limit. In the
chiral limit, there is an additional systematic uncertainty of 1% from the chiral extrapolation. Taking the central
valuegF5gF* from the result of the calibration, we compute the light hadron spectrum. Our hadron spectrum
is consistent with the result of the UKQCD Collaboration on the isotropic lattice. We also study the response
of the hadron spectrum to a change of the anisotropic parametergF→gF* 1dgF . We find that a change ofgF

by 2% induces a change of 1% in the spectrum for physical quark masses. Thus the systematic uncertainty on
the anisotropic lattice, as well as the statistical one, is under control.

DOI: 10.1103/PhysRevD.64.114503 PACS number~s!: 11.15.Ha

I. INTRODUCTION

The anisotropic lattice is drawing more attention as a use-
ful technique of lattice QCD simulation in various fields of
physics, such as the spectroscopy of exotic states, finite tem-
perature QCD, and heavy quark physics. However, the ad-
vantage of having a fine lattice spacing in the temporal di-
rection is obtained at the sacrifice of manifest temporal-
spatial axis interchange symmetry. Therefore improper use of
the anisotropic lattice could lead to an unphysical result due
to the lack of Lorentz symmetry in the continuum limit. This
can be a serious problem for the physics in which the preci-
sion of the results is crucial.

One way to avoid this problem is to tune the anisotropy
parameters of the action by imposing the conditions with
which the Lorentz invariance is satisfied for some physical
observables. In the Wilson plaquette gauge action there is
only one anisotropic parameter in the action@1#. Wilson
loops are used to obtain the relation between the anisotropic
parameter and the physical ratio of the lattice spacings in
temporal and spatial directions,j5as /at , whereas andat
are the spatial and temporal lattice spacings@2–5#. On the
other hand, not much is known about the quark action. This
is because previous work on the quark action on the aniso-
tropic lattice has been devoted to charmonium systems
@6–9#. In order to apply the anisotropic lattice to systems
containing light quarks, one has to study how one can tune
the parameter of the light quark action in practical simula-
tions.

In this paper we study theO(a) improved Wilson action
on the anisotropic lattice using quenched lattices with three
lattice spacings, at fixed renormalized anisotropyj54.
These scales cover the range of the spatial lattice cutoff

as
2151 –2 GeV. We first tune the bare anisotropy in the

quark action numerically so that the renormalized fermionic
anisotropy is equal to that of the gauge field, by imposing the
relativistic dispersion relation of mesons. This calibration is
performed to the level of 1% statistical accuracy in the whole
quark mass region below the charm quark mass. The ex-
trapolation of the tuned bare anisotropy to the chiral limit is
performed by fitting to presumable forms, and causes addi-
tional systematic uncertainty of 1% at the chiral limit. The
systematic uncertainty in the calibration from lattice artifacts
is estimated by comparing the results from different types of
dispersion relation. It results in 3% uncertainty on our coars-
est lattice, and tends to vanish in the continuum limit. Using
the result of the calibration we compute the light hadron
spectrum on anisotropic lattices, and examine how the uncer-
tainty in the calibration affects the spectrum for the param-
eters of physical interest. It is found that an uncertainty of
2% in calibration induces a systematic error of 1% in the
spectrum. Thus the systematic uncertainty on the anisotropic
lattice is under control, as well as the statistical one. We also
show that anisotropic lattices produce results consistent with
those on isotropic lattices, and that the Lorentz invariance of
the simple matrix element is satisfied within errors.

This paper is organized as follows. The next section de-
scribes theO(a) improved Wilson quark action, which has
been discussed in@10,6#. The calibration procedures are dis-
cussed in Sec. III. In Sec. IV, we perform the calibration of
the bare anisotropy in the quark action. The systematic un-
certainty induced by this tuning is fully examined. In Sec. V
we apply the anisotropic lattice to light hadron spectroscopy.
In the last part of this section, the systematic uncertainty due
to the anisotropy is again investigated in terms of the effect
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on the hadron spectrum. The last section is devoted to our
conclusions.

II. QUARK ACTION ON AN ANISOTROPIC LATTICE

A. Quark field action

We employ theO(a) improved quark action on an aniso-
tropic lattice. The form of action has been discussed in Ref.
@10#; it is the same as the Fermilab action@11# but defined on
an anisotropic lattice. In this section we summarize the re-
sults that will be necessary in the following calculations.

The quark action is represented in the hopping parameter
form as

SF5(
x,y

c̄~x!K~x,y!c~y!, ~2.1!

K~x,y!5dx,y2kt@~12g4!U4~x!dx14̂,y1~11g4!

3U4
†~x24̂!dx24̂,y#2ks(

i
@~r 2g i !Ui~x!

3dx1 î ,y1~r 1g i !Ui
†~x2 î !dx2 î ,y#

2kscE(
i

s4iF4i~x!dx,y

2rkscB(
i . j

s i j Fi j ~x!dx,y , ~2.2!

whereks and kt are the spatial and temporal hopping pa-
rameters,r is the Wilson parameter, andcE and cB are the
clover coefficients. In principle, for a givenks , the four
parametersks /kt , r, cE , and cB should be tuned so that
Lorentz symmetry holds up to discretization errors ofO(a2).

On an anisotropic lattice, the mean-field values of the
spatial link variableus and the temporal oneut are different
from each other. The tadpole improvement@12# is achieved
by rescaling the link variable asUi(x)→Ui(x)/us and
U4(x)→U4(x)/ut . This is equivalent to redefining the hop-
ping parameters as the tadpole-improved ones~with tilde!

throughks5k̃s /us and kt5k̃t /ut . We define the anisot-
ropy parametergF as

gF[
k̃t

k̃s

. ~2.3!

At the tadpole-improved tree level, and for sufficiently small
quark mass, the anisotropygF coincides with the cutoff an-
isotropyj5as /at .

In this work, we set the coefficients of the spatial part of
the Wilson term and the clover coefficients as the tadpole-
improved tree-level values, namely,

r 5
1

j
, cE5

1

usut
2

, cB5
1

us
3

, ~2.4!

and perform a nonperturbative calibration only forgF with
the meson dispersion relation.

It is useful to definek

1

k
[

1

k̃s

22~gF13r 24! ~2.5!

so that the bare quark mass in spatial lattice units,m0s is
expressed as

m0s5
1

2 S 1

k
28D , ~2.6!

which is analogous to the value on an isotropic lattice.

B. Dispersion relation of free quark

In this subsection, we examine the dispersion relation of
the free quark on an anisotropic lattice. First the tree-level
relation of bare anisotropy withj is derived from the condi-
tion that the rest mass and the kinetic mass coincide. Then
we discuss how the dispersion relation is distorted at the
edge of the Brillouin zone due to our choicer 51/j @6#.

From the action~2.2!, the free quark propagator satisfies
the dispersion relation

coshE~p!511

p̄21Fm01
1

2
~r /gF!p̂2G2

2F11m01
1

2
~r /gF!p̂2G , ~2.7!

wherep̄i5(1/gF)sinpi , p̂i52 sin(pi/2), andm05m0s /gF is
the bare quark mass in temporal lattice units. Settingp50,
Eq. ~2.7! gives the rest mass

M1[E~0!5 ln~11m0!. ~2.8!

On the other hand, the kinetic mass is defined and obtained
as

1

M2
[j2

d2E

dpi
2U

p50

5j2S r /gF

m011
1

2/gF
2

m0~m012!
D . ~2.9!

Generally the rest mass~2.8! and the kinetic mass~2.9! are
different. One can tune the bare anisotropy parametergF so
that it gives the same values for the rest and kinetic masses
@11#. Putting the rest and the kinetic masses equal, the an-
isotropy parametergF is represented usingm0 and r as

1

gF
5AS rm0~m012!

4~m011! D 2

1
m0~m012!

2j2 ln~11m0!
2

rm0~m012!

4~m011!
.

~2.10!

For smallm0 , gF is expanded inm0 as
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1

gF
5

1

j F11
1

2
~12r j!m01

1

24
~2116r j13r 2j2!m0

2G
5

1

j F11
1

3
m0

2G ~r 51/j!. ~2.11!

The m0 dependence starts with the quadratic term forr
51/j; therefore the dependence on the quark mass is small
for sufficiently smallm0. For example, let us consider the
case ofat54 GeV, which corresponds to the coarsest lattice
in our simulation. The charm quark mass corresponds to
m0.0.3 and at this valuegF is different fromj by only 3%.
Up to this quark mass region, one can expect that the differ-
ence ofgF from j will also be small in the numerical simu-
lation. This is examined in Sec. IV.

With our choice of Wilson parameterr 51/j, the action
~2.2! leads to a smaller spatial Wilson term for a larger cutoff
anisotropyj. The question is how the contribution of the
doubler eliminated by the Wilson term becomes significant
for practical values ofj. In the following argument on this
subject, we treat only the case ofgF almost equal toj, i.e.,
the region ofm0 sufficiently smaller than unity. Figure 1
shows the dispersion relation~2.7! for several values ofm0
in the case ofj54, which we use in the numerical simula-
tion.

Let us examine the practical caseas
21.1.0 GeV, which

corresponds to the lowest spatial cutoff of our three lattices.
For the light quark mass region,m050.02–0.05 corresponds
to 80–200 MeV, and roughly covers the mass region that we
use in the hadron spectroscopy in Sec. V.E(p)2E(0) rap-
idly decreases at the edge of the Brillouin zone, and the
height atz5a/p is around 400 MeV. For two quarks with
momentap56a/p, the additional energy of the doublers is
;800 MeV, and is not expected to have a severe effect on
the spectrum and other observables. For a higher lattice cut-
off, the situation improves. Thus we regard the doubler con-
tribution as sufficiently small on the lattice we use in the
simulation.m050.3 roughly corresponds to the charm quark
mass withas

21.1 GeV. In the case of heavy-light hadrons,

such asD mesons andLc baryons, the scale of momentum
transfer inside the hadrons is of the order ofLQCD , and the
same argument holds as for the light quark case. On the other
hand, for the heavy quarkonium, the typical energy and mo-
mentum exchanged inside the meson are on the order ofmv2

and mv, respectively@13#. For the charmonium,v2;0.3;
thus the typical scale of the kinetic energy is around 500
MeV. This seems not sufficiently smaller than the two dou-
blers’ contributions, and hence one needs to choose a larger
lattice cutoff in the calculation of the heavy quarkonium.

III. CALIBRATION PROCEDURES

On an anisotropic lattice, one must tune the parameters so
that the anisotropy of the quark field,jF , equals that of the
gauge field,jG :

jF~b,gG ;k,gF!5jG~b,gG ;k,gF!5j. ~3.1!

SincejG andjF are in general functions of both gauge pa-
rameters (b,gG) and quark parameters (k,gF), a simulation
with dynamical quarks requires tuning these bare parameters
simultaneously. In the quenched case, however, this tuning is
rather easy to perform, sincejG can be determined indepen-
dently of gF . After the determination ofj, one can tunegF
so that a certain observable satisfies the condition~3.1!. In
this work, we use the relativistic dispersion relation of me-
sons

E2~p!5m21
p2

jF
2

1O~p4! ~3.2!

as our main calibration procedure. The energy and the mass
of the meson,E andm, are in temporal lattice units while the
momentum is in spatial lattice units.jF appears to convert
the momentum in spatial lattice units into temporal lattice
units, and it is considered as the fermionic anisotropy defined
through this relation. With the conditionjF5j, this condi-
tion satisfies the requirement that the rest mass and the ki-
netic mass one equal to each other. For finite lattice spacings,
the above dispersion relation holds only up to theO„(p2)2

…

correction term. In the continuum limit, this higher order
term ina would vanish and the relativistic dispersion relation
would be restored.

In the numerical simulation, we fitE2 to the form Eq.
~3.2! and obtain the value ofjF for each input value of the
bare anisotropygF . Then we linearly interpolatejF in terms
of gF and findgF* , the value ofgF for which jF5j holds.

In order to estimate the systematic errors we also use the
dispersion relation that corresponds to the lattice Klein-
Gordon action@6#,

coshE~p!2coshE~p50!5
1

2jKG
2

p̂2. ~3.3!

Thus the comparison of these two calibration conditions
typically shows the size of the lattice discretization errors.

Expanding this expression ina, jKG is related tojF as

FIG. 1. Dispersion relation of the free quark forj54.
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jKG5jFS 12
m2

12
1O~a4! D . ~3.4!

The same inputgF gives a smaller value forjKG than forjF ,
and therefore the tuned bare anisotropygF* results in a larger
value in the former case.

IV. NUMERICAL RESULTS OF CALIBRATION

The goal of this section is to determine the tuned bare
anisotropy of the quark field,gF* , at each fixed quark mass in
the region from strange to charm quark masses. The reason
for this choice of the quark mass range is that the simulation
is easier, which reduces the amount of work in the exhaustive
study of the calibrations. Fitting the result as a function of
the quark mass, we obtaingF* to the statistical accuracy of
the 1% level for the whole quark mass region below the
charm quark mass, including the chiral limit.

Then we estimate the systematic uncertainties ofgF*
which are mainly due toO(aa) andO(a2) lattice artifacts.
We also investigate how these systematic errors as well as
the statistical error affect the meson masses in the region
ms,mq,mc . The response of hadron masses with respect
to gF in the light quark mass region,mq,ms , needs addi-
tional care, and is the subject of the next section. At the end
of this section, we summarize the result of calibration.

A. Simulation parameters for the calibration

In this work, we use three lattices withb55.75, 5.95, and
6.10 and renormalized anisotropyj54. The value ofgG

corresponding to the desired value ofj has been studied in
detail by Klassen@5#, and we can use his relation ofgG and
j which was obtained at 1% accuracy. The statistical uncer-
tainties are, unless otherwise noted, estimated by the single
elimination Jackknife method with appropriate binning. The
configurations are separated by 2000~1000! pseudo-heat-
bath sweeps, after 20000~10000! thermalization sweeps at
b55.95 and 6.10~5.75!. The configurations are fixed to the
Coulomb gauge, which is particularly useful for the smearing
of hadron operators.

The lattice cutoffs and the mean-field values of link vari-
ables are determined on smaller lattices with half the size in
temporal extent forb55.75 and 5.95, and otherwise with the
same parameters, while atb56.10 the lattice size is
163364. To obtain the lattice cutoffs, the static quark poten-
tial is measured by the standard procedure. We adopt the
hadronic radiusr 0 proposed by Sommer@14# to set the scale.
Following the method in Ref.@14#, we determine the force
between static quark and antiquark, as a function ofr I , the
interquark distance improved with the lattice one-gluon ex-
change potential form. Then we fit the values of the force,
containing the off-axis data, to the forms1A/r I

2 in the fit-
ting region roughly 0.5r 0,r I,2r 0. The parameterss andA
can be identified as the string tension and the Coulomb co-
efficient. The systematic uncertainty due to the choice of fit
range is small, and at most the same size as the statistical
error. Table I shows the values ofr 0 andas

21 determined by
setting the physical value ofr 0 as r 0

215395 MeV (r 0

.0.5 fm!. The quoted errors represent only the statistical
uncertainty.

TABLE II. Calibration parameters and results atb55.75. Linear fit is applied to the dispersion relation in
the determination ofjF .

k Input gF Ncon f gF*
(PS) gF*

(V) gF* mPS(gF* ) mV(gF* )

0.124 3.9,4.0 400 3.935~77! 3.83~18! 3.919~72! 0.1497~6! 0.2294~17!

0.122 3.9,4.0 400 3.904~48! 3.884~82! 3.899~45! 0.2044~4! 0.2650~12!

0.120 3.9,4.0 400 3.892~43! 3.888~54! 3.891~38! 0.2523~8! 0.3018~12!

0.118 3.9,4.0 400 3.906~36! 3.894~42! 3.901~31! 0.2967~9! 0.3387~12!

0.116 3.9,4.0 300 3.875~35! 3.841~42! 3.861~33! 0.3408~13! 0.3774~15!

0.114 3.9,4.0 200 3.899~36! 3.842~47! 3.878~36! 0.3819~17! 0.4142~19!

0.112 3.8,3.9,4.0 200 3.854~29! 3.806~37! 3.836~30! 0.4252~17! 0.4546~18!

0.110 3.8,3.9,4.0 200 3.878~33! 3.827~41! 3.857~34! 0.4654~22! 0.4918~23!

0.105 3.7,3.8,3.9,4.0 160 3.807~30! 3.754~37! 3.786~31! 0.5738~28! 0.5954~28!

0.101 3.7,3.8,3.9,4.0 160 3.730~26! 3.679~31! 3.709~27! 0.6653~30! 0.6845~30!

0.097 3.5,3.6 160 3.626~19! 3.587~24! 3.611~20! 0.7647~28! 0.7823~28!

0.095 3.5,3.6 160 3.579~18! 3.540~23! 3.564~19! 0.8166~29! 0.8333~29!

0.093 3.5,3.6 160 3.530~17! 3.490~21! 3.514~18! 0.8704~29! 0.8864~29!

TABLE I. Lattice parameters. The scaleas
21 is determined from the hadronic radiusr 0. The mean-field

values are in the Landau gauge. The statistical uncertainty ofut is less than the last digit.

b gG Size r 0 as
21 ~GeV! us ut hMF

5.75 3.072 123396 2.786~15! 1.100~ 6! 0.7620~2! 0.9871 1.2953~4!

5.95 3.1586 1633128 4.110~23! 1.623~ 9! 0.7917~1! 0.9891 1.2494~2!

6.10 3.2108 2033160 5.140~32! 2.030~13! 0.8059~1! 0.9901 1.2285~2!
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The mean-field valuesus andut are obtained as the av-
erage of the link variables in the Landau gauge, where the
mean-field values are used self-consistently in the fixing con-
dition @6#. These results are also listed in Table I. The mean-
field value of the temporal gauge field has a small error and
is close to unity.hMF5ut /us , the mean-field estimate of
h5j/gG , is close to the value ofh determined nonpertur-
batively by Klassen. This suggests that the tadpole improve-
ment works well on the anisotropic lattice also.

B. Quark field calibration

As described in Sec. III, we use the relativistic dispersion
relation in the calibration of parameters in the quark action.
Since the gauge field calibration is at the accuracy of 1%, we
aim to tune the quark parameters to a similar level.

For convenience, we choosek andgF as the input param-
eters and determineks and kt from Eq. ~2.5!. Fixing k
corresponds to fixing the bare quark mass in spatial lattice
units. For each value of (k,gF), the pseudoscalar and vector

meson correlators are obtained with zero and finite momenta.
The fermionic anisotropyjF is defined through the relativis-
tic dispersion relation Eq.~3.2!. We assume a linear depen-
dence ofjF on gF in the vicinity of jF.j. We use linear
interpolation to obtaingF* , the value ofgF at which the
relationjF5j holds.

Result for the dispersion relation

The parameters (k,gF) used in the calibration are listed in
Tables II, III, and IV for b55.75, 5.95, and 6.10, respec-
tively. As the meson operators at the source, we adopt the
smeared operators with appropriate smearing functions. For
the light quark region, a Gaussian function is used as the
smearing function, with a width of 0.2–0.4 fm. In the charm
quark mass region, we also use the measured wave function
for the smearing function. We measure the two-point func-
tions for momentap5n(2p/L), whereL is the spatial lattice
extent andn5(0,0,0), (1,0,0), (1,1,0), (1,1,1), and (2,0,0).

TABLE III. Calibration parameters and results atb55.95. Linear fit is applied to the dispersion relation
in the determination ofjF .

k Input gF Ncon f gF*
(PS) gF*

(V) gF* mPS(gF* ) mV(gF* )

0.124 3.9,4.0 500 4.073~95! 4.15~12! 4.103~80! 0.1177~6! 0.1649~9!

0.123 3.9,4.0 500 4.041~69! 4.095~93! 4.060~60! 0.1456~2! 0.1847~8!

0.122 3.9,4.0 500 4.029~55! 4.076~68! 4.048~48! 0.1712~4! 0.2045~8!

0.120 3.9,4.0 500 4.019~36! 3.996~55! 4.012~34! 0.2186~6! 0.2444~9!

0.118 3.9,4.0 500 4.003~29! 4.000~35! 4.002~28! 0.2625~8! 0.2841~9!

0.115 3.9,4.0 360 3.992~28! 3.969~36! 3.983~29! 0.3260~12! 0.3431~13!

0.110 3.9,4.0 300 3.945~28! 3.946~36! 3.946~29! 0.4297~19! 0.4427~19!

0.107 3.9,4.0 300 3.910~25! 3.911~31! 3.910~26! 0.4930~20! 0.5046~21!

0.104 3.9,4.0 200 3.876~28! 3.875~36! 3.876~30! 0.5573~27! 0.5677~27!

0.102 3.9,4.0 200 3.848~26! 3.847~34! 3.847~28! 0.6016~28! 0.6113~28!

0.100 3.9,4.0 200 3.815~25! 3.816~32! 3.815~27! 0.6470~29! 0.6562~29!

0.097 3.8,3.9 200 3.766~24! 3.765~30! 3.766~26! 0.7178~32! 0.7264~32!

0.093 3.7,3.8 200 3.688~23! 3.687~29! 3.688~25! 0.8180~37! 0.8257~37!

TABLE IV. Calibration parameters and results atb56.10. Fork50.124, 0.123, and 0.122, the dispersion
relation is fitted to a linear form in determiningjF . For the remainingk ’s, a quadratic fit is applied.

k Input gF Ncon f gF*
(PS) gF*

(V) gF* mPS(gF* ) mV(gF* )

0.124 4.0,4.1 600 4.020~77! 3.63~27! 3.991~79! 0.1008~5! 0.1379~7!

0.123 4.0,4.1 600 4.005~52! 3.860~98! 3.973~55! 0.1294~1! 0.1582~5!

0.122 4.0,4.1 600 3.998~41! 3.913~69! 3.976~44! 0.1549~3! 0.1787~6!

0.120 4.0,4.1 400 4.040~29! 4.064~45! 4.047~30! 0.2007~6! 0.2182~7!

0.118 4.0,4.1 200 4.040~33! 4.014~52! 4.032~34! 0.2440~9! 0.2579~10!

0.115 4.0,4.1 200 4.024~28! 4.008~41! 4.019~30! 0.3067~12! 0.3176~13!

0.110 4.0,4.1 200 4.013~38! 3.996~54! 4.007~43! 0.4078~26! 0.4160~27!

0.107 4.0,4.1 200 3.988~36! 3.986~46! 3.987~39! 0.4694~29! 0.4766~30!

0.104 4.0,4.1 200 3.951~33! 3.955~42! 3.952~36! 0.5331~31! 0.5396~31!

0.102 3.9,4.0 200 3.918~32! 3.928~40! 3.922~35! 0.5773~34! 0.5834~34!

0.100 3.9,4.0 200 3.877~25! 3.883~32! 3.879~27! 0.6240~28! 0.6298~28!

0.097 3.9,4.0 200 3.834~22! 3.839~28! 3.836~24! 0.6931~28! 0.6984~28!

0.093 3.8,3.9 200 3.769~21! 3.776~26! 3.772~23! 0.7903~32! 0.7953~31!
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All rotationally equivalentn’s are averaged. The standard
procedure is used in extracting the energy at each momen-
tum.

The energies are then fitted to linear or quadratic forms in
p2 to extract the fermionic anisotropyjF in each channel. In
the case of a linear fit, we use only the three lowest momen-
tum statesn5(0,0,0), (1,0,0), and (1,1,0). We assume a
linear dependence ofjF(gF) on gF , and this is indeed veri-
fied in several examples.

Figure 2 shows typical effective mass plots for the pseu-
doscalar~PS! and vector~V! mesons. The energies of finite
momentum states are successfully extracted from the region
in which the correlator shows plateaus, except for the lightest
quark region,k>0.120, which suffers severely from statisti-
cal fluctuation.

The dispersion relation fork50.105 atb55.75 is shown
in the left panel of Fig. 3. Because of the rather large lattice
artifact, the fit to the quadratic form inp2 with the energy of
then5(2,0,0) state is not a good description of the data. We

therefore use only the four lowest energy states in the qua-
dratic fit. On the other hand, the results of the linear fit~with
the lowest three states! and the quadratic fit coincide with
good accuracy. For the few largest hopping parameters, the
higher momentum states suffer such large statistical fluctua-
tions that we always adopt the linear fit. Since at other values
of k the resultantjF coincides with that of the quadratic fit,
we adopt the linear fit for all values ofk at thisb. Since the
same method is adopted atb55.95 at asb55.75, we do not
repeat the explanation for the fitting procedure.

The right panel of Fig. 3 shows the dispersion relation of
mesons atb56.10 andk50.115, which corresponds to a
similar quark mass ask50.105 atb55.75. The dispersion
relation is much improved, and the quadratic fit is success-
fully applied including then5(2,0,0) state. Although the
difference from the linear fit is small, as shown in the figure,
we adopt the result of the quadratic fit to determinejF except
for the lightest quark region. For these three largestk, corr-
elators with n5(2,0,0), and occasionally (1,1,1), suffer

FIG. 2. Effective mass plots of PS and V mesons atk50.105, gF53.8 on ab55.75 lattice. From bottom to top, states with integer
momentum vectorsn5(0,0,0), (1,0,0), (1,1,0), (1,1,1), and (2,0,0). Horizontal solid lines represent the results of fits of correlators and the
fitting range. The statistical errors are represented by the dashed lines. The state withn5(2,0,0) is not used in the fit of the dispersion
relation at thisb.

FIG. 3. Dispersion relations of PS and V mesons. The left panel shows the data atk50.105 andgF53.8 and 3.7 on theb55.75 lattice.
The right panel shows the data atk50.115 andgF54.0 and 4.1 on theb56.10 lattice. Solid lines represent the linear fit and the dashed
lines show the quadratic fit.
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from such large statistical fluctuations that the energy of the
states cannot be reliably extracted. In these cases, we fitted
the energy to the linear form.

Calibration of gF for each quark mass

In the left panel of Fig. 4,jF is plotted as a function ofgF
for k50.105 atb55.75. It is clear thatjF depends linearly
on gF . The results atk50.101, 0.110, and 0.112 show simi-
lar behavior. We therefore assume linear dependence also for
other values ofk, and interpolatejF to find gF* in each
channel. The numerical results forgF*

(PS) , gF*
(V) , and gF*

averaged over PS and V mesons are listed in Tables II–IV
for eachb. These tables also show the interpolated masses of
PS and V mesons. We find a tendency forgF*

(PS) to be
slightly larger thangF*

(V) in the wholek region. This devia-
tion seems to become smaller for largerb. The reason for the
discrepancy is understood to be the systematic errors of
O(aa), which will be examined in detail in the next subsec-
tion.

We also plot thegF dependence of the meson masses at
k50.105 andb55.75 in the right panel of Fig. 4. This
shows that the meson mass is linear ingF in this range, and
linear interpolation can be applied successfully to determine
the meson masses atgF* . Although thegF dependence of the
meson mass is in general unknown for other regions ofk, we
expect that the linear interpolation will work with good ac-
curacy. The meson masses atgF* are also listed in Tables
II–IV for each b. How the uncertainty ingF* affects the

spectrum is an important problem, which will be examined
in the next subsection.

Fit of gF*

To representgF* as a function ofk, we introduce the
quark mass as

mq5
1

2j S 1

k
2

1

kc
D . ~4.1!

This is similar relation as form0, the bare quark mass in
temporal lattice units, while the present form is independent
of gF . kc is determined from the massless point of the pseu-
doscalar meson mass. We extrapolatemPS

2 linearly in 1/k
using the two largest values ofk, and findkc5 0.12640~5!
at b55.75, 0.12592~6! at b55.95, and 0.12558~4! at b
56.10.

In the calibration at eachk, we found that the value ofgF*
is easily determined precisely~to the level of 1%!, while it
becomes more difficult ask increases towardkc . However,
it is expected thatgF* smoothly approaches a certain definite
value in the limit ofmq→0, since in this limit our form of
action is simply a direct generalization of the clover quark
action on an anisotropic lattice. In fact, as shown in Sec.
II B, gF* depends linearly onm0

2 at the tree level. In taking
the limit of mq→0 for gF* , the precise mean-field values do
not matter, since in the definition ofgF tadpole improvement
is applied as a multiplicative factor,hMF5ut /us . Therefore

FIG. 4. gF dependence ofjF ~left! and meson masses~right! at k50.105 on theb55.75 lattice.

TABLE V. Fit results forgF* .

b Fit type z0 z1 z2 x2/Nd f gF* (mq50)

5.75 linear 0.2558~ 9! – 0.230~12! 1.83 / 11 3.909~14!

quad. 0.2564~23! 20.007(28) 0.247~68! 1.77 / 10 3.901~34!

5.95 linear 0.2490~ 8! – 0.189~15! 3.52 / 11 4.016~13!

quad. 0.2465~18! 0.036~23! 0.095~61! 1.01 / 10 4.057~30!

6.10 linear 0.2479~ 9! – 0.143~14! 4.44 / 11 4.034~14!

quad. 0.2493~18! 20.022(24) 0.200~63! 3.55 / 10 4.011~28!
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the most reliable way to determine the value ofgF* in the
light quark region is a global fit ofgF* , assuming the appro-
priate form ofmq dependence.

We fit the result of 1/gF* to a linear form inmq
2 and a

quadratic form inmq . The result of the fits is listed in Table
V and also shown in Fig. 5 as the solid and the dashed
curves. Since the points obtained forgF* are with different
numbers of configurations, these points do not correlate in an
obvious way. We quote the errors andx2 of the uncorrelated
fit in Table V. As shown in this table and figure, the linear fit
in mq

2 well represents the data. The value ofz0, which is
1/gF* in the chiral limit, is close to the tree-level result 1/j
51/4, which implies that the tadpole improvement works
well. Apart from the lightest quark mass region,gF* is deter-
mined within 1% accuracy, and there the curves of the two
fits are consistent with each other. In approaching the chiral
limit, there is a systematic error concerning the fit form, as
well as the statistical error. We estimate the latter by the error
of the fit in z0 ~from the quadratic fit inmq

2), to be about 1%.
This relatively small statistical error is due to the global fit of
1/gF* with the assumed form ofmq dependence. The system-
atic error in adopting a specific form of fit is estimated by the
difference between these two fits, and is also at the 1% level.
Adopting the linear form inmq

2 , we conclude thatgF* is
determined under the assumed dispersion relation within 1%
statistical accuracy in the whole quark mass region below the
charm quark mass, while in the chiral limit there is an addi-
tional 1% systematic uncertainty concerning the form of the
fit.

C. Uncertainties in calibration

In the last subsection, we determinedgF* as a global func-
tion of mq . This expression inevitably suffers from system-
atic uncertainties as well as the statistical uncertainty:

gF* 5gF*
(prop)1dgF

(stat)1dgF
[O(aa)]1dgF

[O(a2)]

~1dgF
(chiral)!. ~4.2!

gF*
(prop) represents the proper value of the bare anisotropy.

dgF
(stat) is the statistical error in determination ofgF* , and is

at the 1% level. The last two terms are the main sources of
systematic errors due to finite lattice artifacts. The first one,
dgF

[O(aa)] , is from the tree-level approximation of the clover
coefficients. We estimate the size of this error by the differ-
ence between the values ofgF* determined with PS and V

mesons. The second systematic error,dgF
[O(a2)] , is estimated

by comparing the results of the calibration from two different
forms of the dispersion relation that differ byO(a2). In ad-
dition to these systematic uncertainties, in the chiral limit
there is also a systematic error concerning the form of the fit
of gF* in mq .

Another important subject is to estimate how the observ-
ables are affected by the uncertainty ingF* . We study the
response of meson masses with respect to the change ofgF*
at eachk, from which the effect ofgF on the meson masses
for a given quark mass is approximately estimated. Strictly
speaking, changinggF for a fixedk induces a slight change

in the quark mass; hence the above analysis is adequate for
the relatively heavier quark mass region, such asms,mq .
We postpone the study of the effect on the light hadron spec-
trum to the end of the next section.

FIG. 5. 1/gF* vs 1/k at eachb. Solid lines show the fit linear in
mq

2 while the dashed lines represent the fit quadratic inmq .
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Difference betweengF*
„PS… and gF*

„V…

Since we use theO(a)-improved quark action, the main
contribution from theO(a) lattice artifact is absent. How-
ever, since the clover coefficients are not tuned beyond the
tree level, theO(aa) error still remains, although the tadpole
improvement partially removes this effect. An appropriate
probe of this systematic effect on the calibration is the dif-
ference between thegF* ’s of the pseudoscalar and vector me-
sons. Figure 6 showsdgF* [gF*

(PS)2gF*
(V) . At b55.75,

there is a systematic difference ofdgF* from zero except in
the small quark mass region, where the statistical error is
dominant. Atb55.95, dgF* is consistent with zero in the
whole k region. This implies that theO(aa) error in the
calibration is sufficiently reduced at thisb. In the case of
b56.10,dgF* is also consistent with zero except in the light-
est quark region. In this region, precise determination of the
energy in finite momentum states is difficult due to the sta-

tistical fluctuation and hence the resultantgF* contains a
large uncertainty. We assume that theO(aa) effect in the
calibration is also small at thisb.

O„a2
… systematic uncertainty

Although we employed the continuum dispersion relation,
this introduces a systematic error ofO(a2) to the calibration
of gF . In order to estimate the typical size of this error, we
comparegF* determined above withgF(KG)* , the result ob-
tained using the dispersion relation from the lattice Klein-
Gordon action, Eq.~3.3!. Figure 7 shows this comparison at
b55.75 and 6.10. In extractingjKG from the Klein-Gordon
dispersion relation, we fit coshE(p) to a linear form in
( i sin2(pi/2) using the three lowest momentum states. As ex-
plained in Sec. III, the expected difference ofjF andjKG is
O(m2), wherem is the meson mass. Although the explicit
relation betweengF(KG)* andgF* is unknown, one can expect
that the difference between them is alsoO(m2), and hence
will increase with increasing quark mass. This behavior is
clearly observed in Fig. 7. Table VI is the result of the fit of
gF(KG)* to a linear form inmq

2 .
We find a small difference between the results with the

relativistic and Klein-Gordon dispersion relations in the
small quark mass region. This difference decreases with in-
creasing b, and seems to be sufficiently reduced atb
56.10. The typical size of the difference ingF* ’s at the chiral
limit is less than 3%, 2%, and 1% atb55.75, 5.95, and 6.10,
respectively. The important feature is that the two procedures
tend to coincide with each other with increasingb. We also
observe that the difference betweengF* andgF(KG)* increases
in the large quark mass region,mq.0.2at

21 . This is consis-
tent behavior, since there the Klein-Gordon dispersion rela-
tion fails to incorporate the quark mass dependence properly,
and gF(KG)* is expected to be larger thangF* at O(m2).
Therefore we conclude that the uncertainty due to the as-
sumed form of the meson dispersion relation is under control
and smoothly disappears on approaching the continuum
limit.

FIG. 6. dgF* 5gF*
(PS)2gF*

(V) at b55.75 and 5.95 in the upper
part and 6.10 in the lower part.

FIG. 7. Comparison of the results of calibrations with two types of dispersion relation. The curves represent the result of a linear fit in
m0

2. Solid lines are the fit results with the relativistic dispersion relation and the dashed lines are those with the lattice Klein-Gordon
dispersion relation.
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Uncertainty in meson mass due to calibration error

Another important issue of the systematic errors is how
the uncertainty ingF is transmitted to the observables. As an
important example, here we focus on the effect on the meson
masses.

Since we linearly interpolate the meson masses ingF , we
obtaindm/dgF at gF5gF* from the slope of the linear fit. In
Fig. 8, we showdm/dgF , the response of the meson mass to
the bare anisotropy, atb56.10 in two ways. Similar features
are found in the results atb55.75 andb55.95. In the left
paneldm/dgF is shown as a function of 1/k. In the case of
the vector meson, it seems to decrease linearly with increas-
ing quark mass from zero at the massless limit. On the other
hand, for the pseudoscalar meson,dm/dgF is slightly posi-
tive in the vicinity of 1/kc . This behavior may be due to the
uncertainty in the definition ofk, because ifk is properly
related to the fixed quark mass increasinggF implies increas-
ing the propagation in the temporal direction; hence it corre-
sponds to decreasing quark mass. Therefore, the present
analysis may not be adequate for estimating the response of
masses with respect togF in the vicinity of the chiral limit.
Observing Fig. 8, one can see that the range of quark masses
larger than the strange quark mass does not suffer from the
ambiguity in the definition ofk.

We have no clear explanation as to whydm/dgF seems to
be proportional to the quark mass. In practice, it is a good
feature that the ambiguity ofgF* has only little effect on the
meson mass in the small but nonzero quark mass region,
since there a relative change of mass is significant. Except in
the lightest quark mass region, the determination ofgF* is
directly performed with 1% accuracy, which means the un-

certainty of gF* is around 0.04. The right panel in Fig. 8
implies that the uncertainty in the meson mass is less than
1%. This uncertainty is most severe in the heavy quark re-
gion, and becomes milder as the quark mass decreases.

While we find that the meson mass at a certaink is not
too sensitive to the uncertainty ofgF* , the same argument
does not hold for the chiral limit. Since the pseudoscalar
meson mass becomes zero in the chiral limit, the relative
uncertaintydmPS/mPS for a fixedk near the chiral limit is
of course very large. However, this is not the correct way to
estimate the uncertainties in the mass spectrum in the chiral
limit. What one is really interested in for the chiral limit is
not the change in the hadron masses including the pion mass
for a fixedk but the change in the hadron masses except the
pion mass at the point where the pion becomes massless.
Since the critical hopping parameterkc is affected by the
change ingF , one needs to treat the chiral limit carefully. In
Sec. V, we discuss the uncertainties of the hadron spectrum
in the chiral limit based on an extrapolation in terms of the
pseudoscalar meson mass squared instead of 1/k.

D. Summary of calibration

In this section, we have implemented the anisotropic
O(a)-improved Wilson action in the region of quark masses
up to around the charm quark mass, at three values ofb at
j54.0. The fermionic anisotropyjF is extracted from the
meson dispersion relation. Then we find the value of the bare
anisotropy parametergF* at whichjF5j holds. The value of
gF* in the massless limit is obtained by extrapolating the data
by fitting to a linear form inmq

2 , wheremq is the naively
defined quark mass. This is the most reliable way to deter-

TABLE VI. The result of a linear fit inmq
2 of gF(KG)* , the tuned

bare anisotropy with the Klein-Gordon dispersion relation.

b Fit type z0 z2 x2/Nd f gF* (mq50)

5.75 linear 0.2488~8! 0.112~11! 2.33 / 11 4.019~13!

5.95 linear 0.2446~8! 0.071~14! 2.14 / 11 4.088~13!

6.10 linear 0.2484~10! 0.039~15! 1.59 / 11 4.026~16!

TABLE VII. Quark parameters used in hadron spectroscopy.

b gF Values ofk Ncon f

5.75 3.909 0.1240,0.1230,0.1220,0.1210 200
5.95 4.016 0.1245,0.1240,0.1235,0.1230 100
6.10 4.034 0.1245,0.1240,0.1235,0.1230 100

FIG. 8. The response of meson masses to a change ofgF at b56.10. The left panel showsdm/dgF , while the ratio (1/m)dm/dgF is
shown on the right. The results for the pseudoscalar and vector mesons are represented by circles and triangles, respectively.
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mine gF* for the small quark mass region, since there the
statistical fluctuation in finite momentum states is very large.
The fit of 1/gF* to a linear form inmq

2 seems quite successful,
and gF* at the chiral limit is close to the tree-level valuej.
The statistical uncertainty ingF* is estimated as on the order
of 1% in the whole quark mass region explored. In the chiral
limit, there is also 1% systematic uncertainty concerning the
form of the fit. Here we summarize the main result of the
calibration, the expression forgF* at a givenk:

1

gF*
~mq!5z01z2mq

2 , mq5
1

2j S 1

k
2

1

kc
D , ~4.3!

b55.75:z050.2558~9!, z250.230~12!,

kc50.12640~5!, ~4.4!

b55.95:z050.2490~8!, z250.189~15!,

kc50.12592~6!, ~4.5!

b56.10:z050.2479~9!, z250.143~14!,

kc50.12558~4!. ~4.6!

To examine the uncertainty in the calibration, we have
also carried out the following analyses.~i! The difference
betweengF* for the pseudoscalar and vector mesons, which
signals theO(aa) systematic error. We observed that this
difference decreases with decreasing lattice spacing, and is
already consistent with zero atb55.95. ~ii ! Comparison of
gF* with the continuum and the Klein-Gordon dispersion re-
lations. This is for an estimate of the size of theO(a2) sys-
tematic uncertainty. The results with the two dispersion rela-

TABLE VIII. Hadron spectrum atb55.75. When the quark masses are degenerate, i.e.,k15k2, the
S-type andL-type octet baryon correlators are identical.

k1 k2 mPS mV moct(S) moct(L) mdec

0.1210 0.1210 0.22909~47! 0.2821~10! 0.4257~17! – 0.4564~24!

0.1210 0.1220 0.21716~48! 0.2730~11! 0.4146~18! 0.4161~18! 0.4472~25!

0.1210 0.1230 0.20501~51! 0.2640~12! 0.4034~19! 0.4068~19! 0.4383~27!

0.1210 0.1240 0.19260~54! 0.2552~13! 0.3920~20! 0.3977~21! 0.4299~29!

0.1220 0.1210 – – 0.4059~19! 0.4042~19! 0.4381~27!

0.1220 0.1220 0.20480~50! 0.2637~12! 0.3946~19! – 0.4289~28!

0.1220 0.1230 0.19214~52! 0.2546~13! 0.3831~20! 0.3852~21! 0.4199~30!

0.1220 0.1240 0.17911~55! 0.2458~15! 0.3713~21! 0.3760~22! 0.4114~33!

0.1230 0.1210 – – 0.3863~21! 0.3820~20! 0.4202~30!

0.1230 0.1220 – – 0.3747~22! 0.3724~21! 0.4109~32!

0.1230 0.1230 0.17886~54! 0.2454~15! 0.3629~23! – 0.4018~35!

0.1230 0.1240 0.16503~57! 0.2364~17! 0.3506~24! 0.3538~25! 0.3932~39!

0.1240 0.1210 – – 0.3674~25! 0.3587~22! 0.4032~37!

0.1240 0.1220 – – 0.3555~26! 0.3490~24! 0.3938~40!

0.1240 0.1230 – – 0.3432~27! 0.3394~25! 0.3845~44!

0.1240 0.1240 0.15015~60! 0.2272~21! 0.3303~28! – 0.3757~51!

FIG. 9. Effective mass plots for octet and decuplet baryon correlators with degenerate quark masses atb55.75. Horizontal solid line
represent the fit range and the mass from the single exponential fit.
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tions tend to coincide with each other on decreasing the
lattice spacing. The behavior in the large quark mass region
is consistent with the expected behavior.~iii ! Response of
meson masses to the change ofgF . The effect of uncertainty
of gF* on the meson masses is less than 1%, ifgF* is deter-
mined at this accuracy. This result is applicable to the rela-
tively heavier quark mass region, such asms,mq , and
therefore in this region the errors in the calibration are under
control.

V. LIGHT HADRON SPECTROSCOPY

In this section, we apply the results of the last section to
the calculation of the light hadron spectrum. Our analysis is
performed in two steps.

~i! By taking the central value ofgF5gF* we obtain the
light hadron masses in the strange quark mass regionms
,mq,2ms . By extrapolating masses inmPS

2 , the hadron
spectrum at the physical light quark mass is determined. We
compare our result with the result by the UKQCD Collabo-
ration @15#, which was obtained on an isotropic lattice with
O(a)-improved quark action.

~ii ! We study the response of the light hadron spectrum to
a change of the anisotropic parametergF* →gF* 1dgF . The
extrapolation inmPS

2 is significant in circumventing the un-
certainty in the definition ofk.

A. Calculation of hadron spectrum

The spectroscopy of light hadrons is performed on the
same lattices used in the calibration, but with smaller num-

TABLE IX. Hadron spectrum atb55.95.

k1 k2 mPS mV moct(S) moct(L) mdec

0.1230 0.1230 0.14580~40! 0.1853~10! 0.2788~17! – 0.3036~25!

0.1230 0.1235 0.13896~41! 0.1804~11! 0.2726~17! 0.2734~18! 0.2987~26!

0.1230 0.1240 0.13196~43! 0.1755~11! 0.2662~18! 0.2680~19! 0.2938~27!

0.1230 0.1245 0.12477~46! 0.1707~13! 0.2596~19! 0.2625~20! 0.2890~30!

0.1235 0.1230 – – 0.2676~18! 0.2666~18! 0.2937~27!

0.1235 0.1235 0.13190~43! 0.1754~11! 0.2612~19! – 0.2888~29!

0.1235 0.1240 0.12462~45! 0.1705~12! 0.2546~19! 0.2557~20! 0.2839~31!

0.1235 0.1245 0.11709~47! 0.1656~14! 0.2478~20! 0.2501~21! 0.2790~33!

0.1240 0.1230 – – 0.2562~20! 0.2539~19! 0.2839~31!

0.1240 0.1235 – – 0.2496~21! 0.2484~20! 0.2789~33!

0.1240 0.1240 0.11702~47! 0.1654~14! 0.2427~21! – 0.2740~35!

0.1240 0.1245 0.10908~50! 0.1605~16! 0.2356~22! 0.2370~23! 0.2692~38!

0.1245 0.1230 – – 0.2445~23! 0.2405~21! 0.2743~37!

0.1245 0.1235 – – 0.2376~24! 0.2348~22! 0.2693~39!

0.1245 0.1240 – – 0.2305~25! 0.2289~24! 0.2644~42!

0.1245 0.1245 0.10063~53! 0.1555~19! 0.2229~26! – 0.2597~47!

TABLE X. Hadron spectrum atb56.10.

k1 k2 mPS mV moct(S) moct(L) mdec

0.1230 0.1230 0.12950~29! 0.1587~6! 0.2394~11! – 0.2590~17!

0.1230 0.1235 0.12284~30! 0.1538~6! 0.2332~12! 0.2340~12! 0.2542~18!

0.1230 0.1240 0.11603~31! 0.1491~7! 0.2269~12! 0.2288~12! 0.2495~19!

0.1230 0.1245 0.10904~33! 0.1446~8! 0.2204~13! 0.2236~13! 0.2451~21!

0.1235 0.1230 – – 0.2283~12! 0.2273~12! 0.2493~19!

0.1235 0.1235 0.11595~31! 0.1489~7! 0.2219~13! – 0.2445~20!

0.1235 0.1240 0.10886~32! 0.1442~8! 0.2154~13! 0.2166~13! 0.2399~22!

0.1235 0.1245 0.10153~33! 0.1398~9! 0.2087~14! 0.2112~14! 0.2355~24!

0.1240 0.1230 – – 0.2171~14! 0.2148~13! 0.2400~22!

0.1240 0.1235 – – 0.2106~14! 0.2093~14! 0.2352~24!

0.1240 0.1240 0.10142~33! 0.1395~8! 0.2038~14! – 0.2306~26!

0.1240 0.1245 0.09366~35! 0.1352~10! 0.1968~15! 0.1983~16! 0.2263~30!

0.1245 0.1230 – – 0.2058~16! 0.2017~15! 0.2314~28!

0.1245 0.1235 – – 0.1990~16! 0.1960~15! 0.2267~30!

0.1245 0.1240 – – 0.1919~17! 0.1903~16! 0.2221~34!

0.1245 0.1245 0.08535~36! 0.1310~12! 0.1845~18! – 0.2180~41!
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bers of configurations. The parameters are listed in Table
VII. At eachb, we use four values ofk corresponding to the
quark massesms–2ms . In this region, we consider thatmq is
sufficiently small so that we can adopt the value ofgF* in the
massless limit. Therefore the bare anisotropy is set to the
central value ofgF* at mq50, which is determined in the
calibration as the linear form inmq

2 .
We use the standard hadron operators and procedure to

extract the hadron masses. The quark propagators are
smeared at the source with a Gaussian smearing function
with the deviation.0.4 fm in the Coulomb gauge. The pe-
riodic boundary condition is adopted in all four directions for
the quark field. For baryons, two of the quarks are treated as
having degenerate masses. Then the quark content of the
baryons is specified by twok ’s, k1 and k2, for a pair of
quarks and the other quark, respectively. Figure 9 shows the
effective mass plot for octet and decuplet baryons with de-
generate quark massesk15k2. The meson correlators are
fitted to a single hyperbolic cosine form. For baryons, we
apply a single exponential fit in the region in which there is
negligible contribution of the negative parity baryon from
the other temporal boundary. The results of the fit are listed
in Tables VIII–X. For mesons, since the order ofk1 andk2
is unimportant, the masses for the exchanged set of (k1 ,k2)
are omitted. The masses of theL-type octet baryons at de-
generate (k1 ,k2) are also omitted, since they are identical to
the masses of theS type.

B. Extrapolation to the chiral limit

In order to avoid ambiguities in the definition of the quark
mass, we extrapolate the hadron masses to the chiral limit in
terms of the pseudoscalar meson mass squared, instead of
1/k. We assume the relation

mPS
2 ~m1 ,m2!5B~m11m2!; ~5.1!

then for degenerate quark massesm15m2 mPS
2 52Bm1

holds. Then instead ofmi ( i 51,2), one can use
mPS(mi ,mi)

2 as the variable in the chiral extrapolation. For
other hadrons, vector mesons and octet and decuplet bary-
ons, we also use the linear relations

mV~m1 ,m2!5mV~0,0!1BV~m11m2!, ~5.2!

moct~m1 ,m2 ,m3!5moct~0,0,0!1Boct~m11m21m3!,
~5.3!

mdec~m1 ,m2 ,m3!5mdec~0,0,0!1Bdec~m11m21m3!.
~5.4!

The hadron spectrum and the result of the fit are shown in
Fig. 10. The horizontal axis is the averaged pseudoscalar
meson mass squared:

^mPS
2 ~mi !&5

1

Nq
(
i 51

Nq

mPS
2 ~mi ,mi !5

1

Nq
(
i 51

Nq

2Bmi

~5.5!

FIG. 10. The masses of vector mesons and octet and decuplet
baryons together with the result of linear fits. Only theS-type octet
baryon is shown. The filled symbols correspond to the masses at the
physicalu, d, ands quark masses with the scale set byr 0.
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with Nq52 for mesons andNq53 for baryons. TheL-type
baryon is not shown in the figure for clarity. The linear fit
seems to be successful.

C. Spectrum at physical quark masses

To determine the hadron masses at the physicalu, d, and
s quark masses, one needs to set the scale of the lattice. We
do not distinguish theu and d quark masses, and express
their mass asmn . We adopt two definitions, through the
hadronic radiusr 0, and through theK* meson mass. These
two methods were also adopted by the UKQCD Collabora-
tion in @15#, and are convenient for comparison of our data
with theirs. In @15#, values of the clover coefficient were
determined in two ways: by a nonperturbative renormaliza-
tion technique~NP! @16#, and tadpole improvement~TAD!
@12#. Then the masses were extrapolated to the continuum
limit by a simultaneous fit of these two types of data to a
linear form ina2 for NP and a quadratic form ina for TAD.
We compare our hadron spectrum at the physical quark
masses with the result in the continuum limit of@15#, al-

though we ourselves do not perform the continuum extrapo-
lation because of a lack of sufficient numbers ofb as well as
the statistical accuracy.

Scale set by r0

The hadronic radiusr 0 has already been obtained in Sec.
IV. The corresponding values of spatial lattice cutoff are
found in Table I. The PS meson masses squared correspond-
ing to mn andms are then defined bymp

65139.6 MeV and
mK5495.7 MeV ~isospin averaged!, respectively. These
definitions are in accord with@15#. The hadron masses ex-
trapolated or interpolated to the physical points are shown in
Fig. 10 and listed in Table XI. For comparison with the re-
sults in @15#, we also list the hadron masses multiplied by
r 0j in Table XI. In the latter case,j appears to convert a
quantity in spatial lattice units (r 0) to one in temporal lattice
units ~masses!. In our data, differences between the results at
b56.10 and 5.95 are rather large compared with the differ-
ences betweenb55.95 and 5.75. This would be partially due
to the differenta dependence of theO(aa) andO(a2) lattice

TABLE XI. Hadron spectrum for physical quark masses with the scale set byr 0.

Mass~GeV! mjr 0 Ref. @15#

b55.75 b55.95 b56.10 b55.75 b55.95 b56.10 cont.

r 0.832~11! 0.846~17! 0.895~12! 2.105~28! 2.141~42! 2.265~30! 2.35~16!

K* 0.9251~90! 0.938~13! 0.977~10! 2.342~23! 2.375~34! 2.473~25! 2.54~12!

f 1.0185~71! 1.031~10! 1.059~ 8! 2.578~18! 2.610~26! 2.680~21! 2.729~77!

N 1.175~16! 1.155~22! 1.197~18! 2.974~40! 2.924~55! 3.032~45! 2.92~24!

L 1.260~13! 1.253~19! 1.283~16! 3.190~34! 3.172~47! 3.248~40! 3.22~20!

S 1.281~14! 1.268~19! 1.302~16! 3.242~35! 3.211~49! 3.295~41! 3.23~19!

J 1.387~12! 1.381~17! 1.406~15! 3.510~31! 3.497~43! 3.558~37! 3.54~15!

D 1.403~28! 1.440~41! 1.521~41! 3.552~72! 3.65~10! 3.85~10! 3.86~37!

S* 1.495~25! 1.532~36! 1.602~37! 3.784~63! 3.877~90! 4.055~93! 4.15~29!

J* 1.587~22! 1.623~31! 1.683~32! 4.017~54! 4.109~78! 4.260~81! 4.44~22!

V 1.679~18! 1.715~26! 1.763~28! 4.249~46! 4.341~66! 4.464~70! 4.72~17!

TABLE XII. Hadron spectrum for physical quark masses with the scale set bymK* . The parameterJ is
also quoted; while it is dimensionless quantity.

Mass~GeV! m/mK* Ref. @15#

b55.75 b55.95 b56.10 b55.75 b55.95 b56.10 cont.

r 0.796~11! 0.795~16! 0.802~11! 0.891~12! 0.890~18! 0.898~12! 0.921(256
132)

K* 0.894~11! 0.894~16! 0.894~11! – – – –
f 0.992~12! 0.993~16! 0.986~11! 1.109~13! 1.110~18! 1.103~12! 1.110(221

1 8)
N 1.125~15! 1.087~21! 1.075~16! 1.259~17! 1.216~23! 1.202~18! 1.14(218

1 6)
L 1.217~14! 1.194~20! 1.175~15! 1.361~15! 1.335~22! 1.315~17! 1.29(215

1 5)
S 1.236~14! 1.207~20! 1.191~16! 1.382~16! 1.351~23! 1.332~17! 1.29(214

1 5)
J 1.346~14! 1.328~21! 1.307~15! 1.506~16! 1.485~23! 1.462~17! 1.45(210

1 4)
D 1.343~27! 1.354~39! 1.363~37! 1.502~30! 1.515~43! 1.525~41! 1.50(217

117)
S* 1.439~25! 1.452~35! 1.454~33! 1.610~28! 1.624~39! 1.626~37! 1.64(213

113)
J* 1.535~23! 1.549~32! 1.544~29! 1.717~25! 1.733~36! 1.727~32! 1.79(210

1 9)
V 1.631~21! 1.647~30! 1.634~25! 1.825~24! 1.842~33! 1.828~28! 1.93(2 8

1 7)
J 0.3859~47! 0.3896~95! 0.3621~47!
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artifacts, and also due to the statistical fluctuation. Our re-
sults for the hadron masses seem to approach the continuum
results of the UKQCD Collaboration on an isotropic lattice
@15#.

Scale set by mK*

In the second case,mK* 5893.9 MeV~isospin averaged!
is used to set the lattice scale. First we interpolate the vector
meson mass to the point where the ratio of PS and V meson
masses is equal to the ratio of the physical values ofK* and
K mesons. Then this vector meson mass defines the lattice
scale. This results in the spatial lattice cutoffs 1.053~13!,
1.525~27!, and 1.817~22! GeV at b55.75, 5.95, and 6.10,
respectively. Then the values ofmPS

2 corresponding to the
(u,d) and s quark masses are determined with the experi-
mentalK andp meson masses. The hadron masses at physi-
cal quark masses are listed in Table XII. We observe a simi-

lar tendency to that when the scale is set byr 0. No signal of
inconsistency with the results on the isotropic lattice is
found.

D. J parameter

The parameterJ was introduced to probe the quenching
effect in @17#, and defined as

J5mV

dmV

dmPS
2 U

mV /mPS5mK* /mK

. ~5.6!

It is known that the quenched lattice simulation does not
reproduce the experimental valueJ50.48(2); it gives an
about 20% smaller value. We show our result forJ in Fig. 11,
as a function of lattice spacing determined byr 0. We find
that our results are consistent with those of the UKQCD
Collaboration on isotropic lattices in the quenched approxi-
mation.

E. Covariance of correlators

Let us consider the pseudoscalar correlator

CPS~p,t !5^OPS~x!OPS
† ~0!&

→ Z2~p! exp@2E~p!t# ~ larget ! ~5.7!

with Z(p)5^0uO(x)uPS(p)&/A2E(p). Here we employ the
covariant normalization. For the local pseudoscalar density
operatorO(x)5q̄(x)g5q(x), if Lorentz covariance is suffi-
ciently restored,Z(p)A2E(p) does not depend on the mo-
mentump. Then

R~p!5
E~p!Z~p!2

mPSZ~0!2
~5.8!

probes the restoration of covariance as a deviation from
unity. In Fig. 12, we show the momentum dependence of
R(p) measured forb55.95 and 6.10. At eachb, the quark

FIG. 11. The parameterJ. Theas is set by usingr 0. Data from
UKQCD Collaboration~square symbols! are taken from Ref.@15#
on isotropic lattices, and slightly horizontally shifted.

FIG. 12. The covariance of the pseudoscalar correlators. The left panel is atb55.95 andk50.1230, and the right atb56.10 andk
50.1230.
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mass is the largest one used in the light hadron spectroscopy.
We find that R(p) at finite momentum is consistent with
R(p50), while higher momentum states suffer from large
statistical fluctuation. This feature is particularly important in
the calculation of form factors, in which the finite momen-
tum states play an essential role.

F. Systematic errors of the spectrum from calibration

To estimate the systematic effect due to the uncertainty of
calibration, we obtain the spectrum at the samek ’s with
slightly shifted bare anisotropygF85gF* 1dgF . We setdgF

50.1, which implies about 2.5% shift of the bare anisotropy.
Figure 13 shows the result for shiftedgF together with the
result forgF* , for b55.75 and 6.10. There are small system-
atic downward shifts in the fitted lines. The spectra at the
physical quark masses are listed in Table XIII as the dimen-
sionless combinationsmjr 0 andm/mK* . The difference be-
tween the masses withgF8 and gF* is slightly amplified to-
ward the chiral limit. Even for the lightest mass in each

species, the difference is at most around 1%. This implies
that the uncertainties of the hadron masses at the physical
(u,d) and s quark masses are about half the uncertainty in
gF . With the relativistic dispersion relation,gF* at mq50
has been determined at eachb within about 2% ambiguity:
the statistical error of 1% and the systematic error of 1% in
the form of the fit. Therefore there is 1% level uncertainty in
the hadron spectrum due to the uncertainty in calibration.
This feature makes the anisotropic lattice promising for fu-
ture physical applications.

VI. CONCLUSION

In this paper, we studied theO(a) improved quark action
on an anisotropic lattice with anisotropyj5as /at54. The
bare anisotropygF* , for which jF5j holds, is determined
for the whole quark mass region below the charm quark
mass, including the chiral limit, at 1% statistical accuracy. In
the massless limit, there is also about 1% systematic uncer-
tainty in extrapolatinggF* to mq50.

FIG. 13. The spectra with shiftedgF ~filled symbols! together with the results atgF* ~open symbols!. The solid lines and dashed lines
represent the fit results atgF5gF* andgF* 1dgF , respectively.

TABLE XIII. Spectra with shiftedgF in dimensionless combinations. The dimensionless parameterJ is
also listed.

mjr 0 m/mK*
b 5.75 5.95 6.10 5.75 5.95 6.10

r 2.084~26! 2.121~40! 2.239~28! 0.891~11! 0.890~17! 0.898~11!

K* 2.322~21! 2.357~32! 2.448~24! – – –
f 2.560~17! 2.592~24! 2.658~19! 1.109~12! 1.110~17! 1.102~12!

N 2.946~37! 2.913~52! 3.019~43! 1.260~16! 1.223~22! 1.212~17!

L 3.166~32! 3.161~45! 3.236~38! 1.363~15! 1.341~21! 1.323~16!

S 3.216~33! 3.199~46! 3.282~39! 1.383~15! 1.356~22! 1.340~17!

J 3.486~29! 3.485~41! 3.545~35! 1.507~15! 1.490~22! 1.468~17!

D 3.514~66! 3.614~96! 3.808~96! 1.503~28! 1.517~41! 1.527~38!

S* 3.748~58! 3.847~85! 4.014~85! 1.610~26! 1.625~37! 1.627~34!

J* 3.983~50! 4.080~73! 4.221~75! 1.717~24! 1.734~34! 1.728~30!

V 4.217~43! 4.313~62! 4.427~65! 1.824~23! 1.842~32! 1.829~27!

J 0.3838~43! 0.3871~86! 0.3614~42!
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The uncertainties in the calibration due to the discretiza-
tion errors are studied by changing the physical inputs or
conditions.~i! We have shown that the dispersion relations
for the pseudoscalar and vector mesons give values ofgF*
that differ by 1% atb55.75, while they show no difference
at b55.95 and 6.10.~ii ! Two different choices of the lattice
dispersion relation, namely, the naive continuum form and
the Klein-Gordon form, also lead to results that differ by 3%
for b55.75, but we found no difference atb56.1 with mq

,0.2at
21 . These systematic uncertainties tend to vanish to-

ward the continuum limit.
The light hadron spectrum was studied using the central

value of the tuned bare anisotropygF* (mq50). We found
that it is consistent with the result on the isotropic lattice
obtained by the UKQCD Collaboration. It was found that a
change ofgF* by 2% would lead to a change of the spectrum
by 1% for the physical quark masses. We also investigated
the Lorentz invariance of the matrix element of the pseudo-
scalar operator as a consistency check.

The main disadvantage in using the anisotropic lattice
would lie in the additional systematic uncertainty caused by
the calibration. There are two types of error ingF* . The first
type consists of the statistical error and the error in the chiral
extrapolation, which was estimated to be at the 2% level. The
second type consists ofO(aa) andO(a2) systematic uncer-
tainties, which were estimated to be 4% atb55.75 and
smaller for largerb. In total, there is 6% ambiguity atb
55.75, which corresponds to our coarsest lattice, and 2–3 %

ambiguity atb56.10. The relative errors in the hadron spec-
trum are half of those ingF* . Since the contribution from the
second type of error vanishes in the continuum limit, we
expect to obtain the hadron spectrum to 1% accuracy in the
continuum limit. This result is encouraging for further appli-
cations. The anisotropic lattice would already be applicable
to quantitative studies that require a few percent accuracy. To
achieve higher accuracy, nonperturbative tuning of the clover
coefficients is required.

Since the range of quark masses where the systematic
errors are under control covers the charm quark region, it is
also important to apply the present anisotropic lattice simu-
lation to the charmonium andD meson systems.

ACKNOWLEDGMENTS

We thank J. Harada, A. S. Kronfeld, O. Miyamura, N.
Nakajima, Y. Nemoto, H. Suganuma, and T. T. Takahashi for
useful discussions. The simulation was done on a NEC SX-5
at the Research Center for Nuclear Physics, Osaka Univer-
sity and a Hitachi SR8000 at KEK~High Energy Accelerator
Research Organization!. H.M. was supported by the Japan
Society for the Promotion of Science for Young Scientists
and also in the early stage of this work by the center-of-
excellence~COE! program at RCNP, Osaka University. T.O.
was supported by a Grant-in-Aid of the Ministry of Educa-
tion No. 12640279. T.U. was supported by the center-of-
excellence~COE! program at CCP, Tsukuba University.

@1# F. Karsch, Nucl. Phys.B205, 285 ~1982!.
@2# G. Burgers, F. Karsch, A. Nakamura, and I.O. Stamatescu,

Nucl. Phys.B304, 587 ~1988!.
@3# QCD-TARO Collaboration, M. Fujisakiet al. Nucl. Phys. B

~Proc. Suppl.! 53, 426 ~1997!.
@4# F. Karsch, J. Engels, and T. Scheideler, Nucl. Phys. B~Proc.

Suppl.! 63, 427~1998!; J. Engels, F. Karsch, and T. Scheideler,
Nucl. Phys.B564, 303 ~2000!.

@5# T.R. Klassen, Nucl. Phys.B533, 557 ~1998!.
@6# T. Umeda, R. Katayama, O. Miyamura, and H. Matsufuru, Int.

J. Mod. Phys. A16, 2215~2000!.
@7# T.R. Klassen, Nucl. Phys. B~Proc. Suppl.! 73, 918 ~1999!.
@8# P. Chen, Phys. Rev. D64, 034504~2001!.
@9# CP-PACS Collaboration, A. Ali Khanet al., Nucl. Phys. B

~Proc. Suppl.! 94, 325 ~2001!.

@10# J. Harada, A. S. Kronfeld, H. Matsufuru, N. Nakajima, and T.
Onogi, Phys. Rev. D64, 074501~2001!.

@11# A.X. El-Khadra, A.S. Kronfeld, and P.B. Mackenzie, Phys.
Rev. D55, 3933~1997!.

@12# G.P. Lepage and P.B. Mackenzie, Phys. Rev. D48, 2250
~1993!.

@13# B.A. Thacker and G.P. Lepage, Phys. Rev. D43, 196 ~1991!.
@14# R. Sommer, Nucl. Phys.B411, 839 ~1994!.
@15# UKQCD Collaboration, K.C. Bowleret al., Phys. Rev. D62,

054506~2000!.
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