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The O(a) improved Wilson quark action on the anisotropic lattice is investigated. We carry out numerical
simulations in the quenched approximation at three values of lattice spaajﬁg:a—Z GeV with the
anisotropyé=a,/a,=4, wherea, anda, are the spatial and temporal lattice spacings, respectively. The bare
anisotropyyg in the quark field action is numerically tuned by the dispersion relation of mesons so that the
renormalized fermionic anisotropy coincides with that of the gauge field. This calibration of the bare anisot-
ropy is performed to the level of 1% statistical accuracy in the quark mass region below the charm quark mass.
The systematic uncertainty in the calibration is estimated by comparing the results from different types of
dispersion relation, which gives 3% on our coarsest lattice and tends to vanish in the continuum limit. In the
chiral limit, there is an additional systematic uncertainty of 1% from the chiral extrapolation. Taking the central
value yg= y£ from the result of the calibration, we compute the light hadron spectrum. Our hadron spectrum
is consistent with the result of the UKQCD Collaboration on the isotropic lattice. We also study the response
of the hadron spectrum to a change of the anisotropic paramgteryg + 8y . We find that a change of:
by 2% induces a change of 1% in the spectrum for physical quark masses. Thus the systematic uncertainty on
the anisotropic lattice, as well as the statistical one, is under control.

DOI: 10.1103/PhysRevD.64.114503 PACS nuniberll.15.Ha

. INTRODUCTION a,;'=1-2 GeV. We first tune the bare anisotropy in the
quark action numerically so that the renormalized fermionic
The anisotropic lattice is drawing more attention as a Useanisotropy is equal to that of the gauge field, by imposing the
ful technique of lattice QCD simulation in various fields of re|ativistic dispersion relation of mesons. This calibration is
physics, such as the spectroscopy of exotic states, finite teferformed to the level of 1% statistical accuracy in the whole
perature QCD, and heavy quark physics. However, the a_:Euark mass region below the charm quark mass. The ex-
vantage of having a fine lattice spacing in the temporal diyapolation of the tuned bare anisotropy to the chiral limit is
rection is obtained at the sacrifice of manifest temporal-, . tormed by fitting to presumable forms, and causes addi-
Spatial axis interchange symmetry. Therefore improper use ‘ﬁonal systematic uncertainty of 1% at the chiral limit. The
:geihinll:gtkr%?g?;trﬁf sC;mUIr(Tj]elter?/dir:(;hinclcj)rr]]?izﬁi%alli{r?ifu'lrth?:%ys'{ematic uncertainty in the calibration from lattice artifacts
. C . : s estimated by comparing the results from different types of
can be a serious problem for the physics in which the preci-;. . . . .
sion of the results is crucial. d|sper§|on relation. It result; in 3% uncertgmty on our coars-
One way to avoid this problem is to tune the anisotropyeSt lattice, and tends to vanish in the continuum limit. Using

parameters of the action by imposing the conditions withthe result of the calibration we compute the light hadron

which the Lorentz invariance is satisfied for some physicaPPECtrum on anisotropic lattices, and examine how the uncer-
observables. In the Wilson plaguette gauge action there i&inty in the calibration affects the spectrum for the param-
only one anisotropic parameter in the actifli. Wilson  €ters of physical interest. It is found that an uncertainty of
loops are used to obtain the relation between the anisotropg” in calibration induces a systematic error of 1% in the
parameter and the physical ratio of the lattice spacings igPectrum. Thus the systematic uncertainty on the anisotropic
temporal and spatial directions=a,/a,, wherea, anda, lattice is under control, as well as the statistical one. We also
are the spatial and temporal lattice spacifgs5]. On the  show that anisotropic lattices produce results consistent with
other hand, not much is known about the quark action. Thishose on isotropic lattices, and that the Lorentz invariance of
is because previous work on the quark action on the anisdhe simple matrix element is satisfied within errors.
tropic lattice has been devoted to charmonium systems This paper is organized as follows. The next section de-
[6—9]. In order to apply the anisotropic lattice to systemsscribes theD(a) improved Wilson quark action, which has
containing light quarks, one has to study how one can tunéeen discussed i10,6]. The calibration procedures are dis-
the parameter of the light quark action in practical simula-cussed in Sec. Ill. In Sec. IV, we perform the calibration of
tions. the bare anisotropy in the quark action. The systematic un-
In this paper we study th®(a) improved Wilson action certainty induced by this tuning is fully examined. In Sec. V
on the anisotropic lattice using quenched lattices with threeve apply the anisotropic lattice to light hadron spectroscopy.
lattice spacings, at fixed renormalized anisotrofs4. In the last part of this section, the systematic uncertainty due
These scales cover the range of the spatial lattice cutofio the anisotropy is again investigated in terms of the effect

0556-2821/2001/641)/11450317)/$20.00 64 114503-1 ©2001 The American Physical Society



HIDEO MATSUFURU, TETSUYA ONOGI, AND TAKASHI UMEDA PHYSICAL REVIEW D64 114503

on the hadron spectrum. The last section is devoted to owand perform a nonperturbative calibration only far with
conclusions. the meson dispersion relation.
It is useful to definex

Il. QUARK ACTION ON AN ANISOTROPIC LATTICE

A. Quark field action %E _i —2(ye+3r—4) (2.5
We employ theD(a) improved quark action on an aniso- Ko
tropic lattice. The form of action has been discussed in Ref. ) ) ) o
[10]; it is the same as the Fermilab actigiri] but defined on SO that the bare quark mass in spatial lattice umrg, is
an anisotropic lattice. In this section we summarize the re€Xpressed as

sults that will be necessary in the following calculations.

The quark action is represented in the hopping parameter 11 8 26
form as Moy =5| 2% ~8/ (2.6
SF=E J(X)K(x,y)lp(y), (2.1  which is analogous to the value on an isotropic lattice.

X,y

B. Dispersion relation of free quark
K(X-Y):5x,y_Kr[(1_')’4)U4(X)5x+21,y+(1+')’4) . . . . . .
In this subsection, we examine the dispersion relation of

the free quark on an anisotropic lattice. First the tree-level
relation of bare anisotropy with is derived from the condi-
tion that the rest mass and the kinetic mass coincide. Then

><UZ(x—21>6x_a,y]—K(,Z [(r—y)Ui(x)

><5x+;vy+(r+yi)UiT(x—T)EX_;’y] we discuss how the dispersion relation is distorted at the
edge of the Brillouin zone due to our choice 1/£ [6].
- KUCEZ 04iF 4i(X) Oy y From the action2.2), the free quark propagator satisfies

the dispersion relation

2

_rKUCBg UijFij(X)ax,yu (22) p2+
: coshE(p)=1+

where «, and k. are the spatial and temporal hopping pa- 2
rametersy is the Wilson parameter, antk andcg are the
clover coefficients. In principle, for a giver,, the four — ) - ) )
parametersc, /., r, g, andcg should be tuned so that Wherepi=(1/yg)sinp;, pi=2 sin@/2), andmo=mo, /v is
Lorentz symmetry holds up to discretization error€gh?).  the bare quark mass in temporal lattice units. Setfrd),

On an anisotropic lattice, the mean-field values of theEd: (2.7) gives the rest mass
spatial link variableu, and the temporal one, are different
from each other. The tadpole improveméh®] is achieved M;=E(0)=In(1+my). (2.8
by rescaling the link variable a$J;(x)—U;(x)/u, and
U4(X)—Uy4(x)/u,. This is equivalent to redefining the hop- On the other hand, the kinetic mass is defined and obtained
ping parameters as the tadpole-improved ofweish tilde) as

through ,=«, /u, and x,=«./u,. We define the anisot-

1 )
Mo+ E(V/YF)F)

. (@27

1 “
1+my+ E(r/yF)pz}

ropy parameteryg as 1 d’E r/ 21v2
=g | o F | (29
~ Mz~ dp, mo+1  me(my+2)
K, p=0
Ko Generally the rest mag2.8) and the kinetic masg.9) are

different. One can tune the bare anisotropy paramgteso
At the tadpole-improved tree level, and for sufficiently smallthat it gives the same values for the rest and kinetic masses
quark mass, the anisotropy: coincides with the cutoff an- [11]. Putting the rest and the kinetic masses equal, the an-

isotropyé=a,/a,. isotropy parametety is represented usingn, andr as
In this work, we set the coefficients of the spatial part of

the Wilson term and the clover coefficients as the tadpole- 2
improved tree-level values, namely, i: \/( rmo(mo+2) Mo(Mo+2)  IMo(Mo+2)
YE 4(mp+1) 282In(1+mg)  4(me+1)
1 1 1 (2.10
r= £ Ce=—, Cg=—73, (2.9
Ugus- us For smallmy, yg is expanded irmg as
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0.30 T T — such asD mesons and\. baryons, the scale of momentum
— m,=002  Freequarkdispersion relation transfer inside the hadrons is of the order\fcp, and the
ozs | T o% £=4.0 ] same argument holds as for the light quark case. On the other
0.20 hand, for the heavy quarkonium, the typical energy and mo-
- mentum exchanged inside the meson are on the ordwep éf
€ 020 and mv, respectively[13]. For the charmoniumy?~0.3;
Ty thus the typical scale of the kinetic energy is around 500
~ 015 f MeV. This seems not sufficiently smaller than the two dou-
) blers’ contributions, and hence one needs to choose a larger
L . . . .
é o010k lattice cutoff in the calculation of the heavy quarkonium.
iT]
0.05 Ill. CALIBRATION PROCEDURES
, On an anisotropic lattice, one must tune the parameters so
0.00 g . . . that the anisotropy of the quark field; , equals that of the
0.00 0.25 0.50 0.75 1.00 gauge field &g :

p,in [a(,_1 unit]
Ee(Bive ik ve)=Ec(Brve ik, ve) = €. (3.1

Sinceég and &g are in general functions of both gauge pa-
rameters 3,yc) and quark parameters(yg), a simulation

FIG. 1. Dispersion relation of the free quark 6= 4.

1 1 5
1+ 5 (1=1§Mo+ 5 (— 1+ 6r+3r262)mg

ve & with dynamical quarks requires tuning these bare parameters
simultaneously. In the quenched case, however, this tuning is
—l1s }mz (r=1/¢) (2.1 rather easy to perform, singg, can be determined indepen-
3 370 ' ' dently of y . After the determination of, one can tuneyg

so that a certain observable satisfies the condit®h). In
The m, dependence starts with the quadratic term for this work, we use the relativistic dispersion relation of me-
=1/¢; therefore the dependence on the quark mass is smadbns
for sufficiently smallmg. For example, let us consider the

case ofa,=4 GeV, which corresponds to the coarsest lattice 5 5 p? .
in our simulation. The charm quark mass corresponds to E“(p)=m"+ —+0O(p") (3.2
my=0.3 and at this valuer is different from¢ by only 3%. F

Up to this guark mass region, one can expect that the diﬁerés our main calibration procedure. The energy and the mass
ence ofy. from £ will also be small in the numerical simu- - ¢’ mesonE andm arg in temporal lattice ugrﬁts while the
lation. This is examined in Sec. IV. ’ P

With our choice of Wilson parameter=1/%, the action momentum is in spatial lattice unit§z appears to convert

(2.2 leads to a smaller spatial Wilson term for a larger Cutoﬁthe momentum in spatial lattice units into temporal lattice

. palic alarg units, and it is considered as the fermionic anisotropy defined

anlsotropy_g._The question Is how the contnbutlon_ Of _the through this relation. With the conditio&-= &, this condi-

?oorUbrIg(r:tﬁ:I;PI\?;Leeds k;)yg ﬂ:ﬁ :/rY(!Sf?)rl]c:ve\/:rT t;ercamgztsé?]nm?smtion satisfies the requirement that the rest mass and the ki-
P : g arg . netic mass one equal to each other. For finite lattice spacings,

SUbJeCt’. we treat only t_he case gf almost eqqal tcg_, € the above dispersion relation holds only up to @&p?)?)

the region ofm, sufficiently smaller than unity. Figure 1 correction term. In the continuum limit, this higher order

ith(t)r\:\(la Sggseedcl,sgpfLSI?,\r,]hszaqueﬁpSg; ?ﬁ:a/erzﬁlmv(frlilégls s?m?ﬂa— term ina would vanish and the relativistic dispersion relation
o would be restored.

tion. In the numerical simulation, we fiE? to the form Eq.

. . _l~ .
Let us examine the practlcql caag =10 GeV, wh|ch (3.2 and obtain the value ofr for each input value of the
corresponds to the lowest spatial cutoff of our three Iatt|cesbare anisotropye . Then we linearly interpolaté in terms

For the light quark mass regiomy=0.02—0.05 corresponds Lk : _
to 80—200 MeV, and roughly covers the mass region that wgf ve and findyg , the value ofyg for which ¢¢= ¢ holds.
In order to estimate the systematic errors we also use the

use the hadron spectroscopy in Se(_:E‘(/p)—E(O) rap- dispersion relation that corresponds to the lattice Klein-
idly decreases at the edge of the Brillouin zone, and theGordon actior{6]

height atz=a/# is around 400 MeV. For two quarks with
momentap= * a/, the additional energy of the doublers is
~800 MeV, and is not expected to have a severe effect on coshE(p) — coshE(p=0) =
the spectrum and other observables. For a higher lattice cut-

off, the situation improves. Thus we regard the doubler con-

tribution as sufficiently small on the lattice we use in the Thus the comparison of these two calibration conditions
simulation.my=0.3 roughly corresponds to the charm quarktypically shows the size of the lattice discretization errors.
mass witha, =1 GeV. In the case of heavy-light hadrons,  Expanding this expression & &g is related toér as
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TABLE I. Lattice parameters. The sca#g ! is determined from the hadronic radiug The mean-field
values are in the Landau gauge. The statistical uncertainty. & less than the last digit.

B Ye Size ro a,* (Gev) Ug u, M

5.75 3072 12x96 278615 1100 6)  0.76202) 09871  1.2958)
5.95 3.1586 15x 128 4.11023) 1.623 9) 0.791711) 0.9891 1.249@)
6.10 3.2108 28x 160 5.14032) 2.03013 0.80591) 0.9901 1.228R)

2

m . corresponding to the desired value $has been studied in
fKesz( 1- E+O(a )

: (3.4 detail by Klasseii5], and we can use his relation gf, and
& which was obtained at 1% accuracy. The statistical uncer-

The same inpuy gives a smaller value fdf g than forég, tainties are, unless otherwise noted, estimated by the single
and therefore the tuned bare anisotrogyresults in a larger elimination Jackknife method with appropriate binning. The
value in the former case. configurations are separated by 20000 pseudo-heat-
bath sweeps, after 2000@000Q thermalization sweeps at
IV. NUMERICAL RESULTS OF CALIBRATION B=5.95 and 6.105.75. The configurations are fixed to the

Coulomb gauge, which is particularly useful for the smearin
The goal of this section is to determine the tuned bar%f hadrongopegrators. P y g

anisotropy of the quark fieldyf , at each fixed quark massin e Jattice cutoffs and the mean-field values of link vari-

the region from strange to charm quark masses. The reasqfy|es are determined on smaller lattices with half the size in
for this choice of the quark mass range is that the S'mU|at'0'?emporaI extent fo=5.75 and 5.95, and otherwise with the
is easier, which reduces the amount of work in the exhaustivg; y,e parameters, while a8=6.10 the lattice size is
study of the calibrations. Fitting the result as a function of1 g3y 64 To obtain the lattice cutoffs, the static quark poten-
the quark mass, we obtaiyf to the statistical accuracy of tja| js measured by the standard procedure. We adopt the
the 1% level for the whole quark mass region below thenadronic radius, proposed by Sommé4] to set the scale.
charm quark mass, including the chiral limit. Following the method in Ref14], we determine the force

Then we estimate the systematic_uncertaintiesypf  petween static quark and antiquark, as a function, ofthe
which are mainly due t@®(«a) andO(a®) lattice artifacts. interquark distance improved with the lattice one-gluon ex-
We also investigate how these systematic errors as well ashange potential form. Then we fit the values of the force,
the statistical error affect the meson masses in the regiogontaining the off-axis data, to the form+ Alr? in the fit-
ms<my<m.. The response of hadron masses with respecfing region roughly 0.6,<r,<2r,. The parameters andA
to ¥ in the light quark mass regiom,<ms, needs addi- can pe identified as the string tension and the Coulomb co-
tional care, and is the subject of the next section. At the endficient. The systematic uncertainty due to the choice of fit
of this section, we summarize the result of calibration. range is small, and at most the same size as the statistical
error. Table | shows the values of anda;, * determined by
setting the physical value of, as r51=395 MeV (rq

In this work, we use three lattices wih=5.75, 5.95, and =0.5 fm). The quoted errors represent only the statistical
6.10 and renormalized anisotro@=4. The value ofyg uncertainty.

A. Simulation parameters for the calibration

TABLE Il. Calibration parameters and results@t 5.75. Linear fit is applied to the dispersion relation in
the determination ofr .

K Input y¢ Neont  7£(F¥ ™ ¥ Mps(¥§) my(7%)

0.124 3.9,4.0 400 3.9867) 3.8318  3.91972  0.14976)  0.229417)
0.122 3.9,4.0 400 3.9048 3.88482 3.89945)  0.20444)  0.265012)
0.120 3.9.4.0 400 3.8923 3.88854) 3.89138)  0.25238)  0.301812)
0.118 3.9.4.0 400  3.9086) 3.89442) 3.90431)  0.29679)  0.338712)
0.116 3.9.4.0 300  3.8785 3.84142 3.86133) 0.340813)  0.377415)
0.114 3.9,4.0 200 3.8996) 3.84247) 3.87836) 0.381917) 0.414719)
0.112 3.8,3.9,4.0 200 3.8808) 3.80637) 3.83630) 0.425217) 0.454618)
0.110 3.8,3.9,4.0 200 3.87®) 3.82741) 3.857134 0.465422)  0.491823

0.105 3.7,3.8,3.9,4.0 160 3.880) 3.75437) 3.78631) 0.573828) 0.595428)
0.101 3.7,3.8,3.9,4.0 160 3.726) 3.67931) 3.70927) 0.665330) 0.684%30)

0.097 3.5,3.6 160 3.6269) 3.58724) 3.61120) 0.764728  0.7823298)
0.095 3.5,3.6 160 3.5798) 3.54023) 3.56419 0.816629)  0.833329)
0.093 3.5,3.6 160 3.5807) 3.49021) 3.51418) 0.870429)  0.886429)
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TABLE lll. Calibration parameters and results @t 5.95. Linear fit is applied to the dispersion relation
in the determination ofg .

K Input ¢ Neons yE (P9 ™ ¥ Mes(7£) my(¥E)

0.124 3.9,4.0 500  4.0785  4.1512)  4.10380)  0.11776)  0.16499)
0.123 3.9,4.0 500  4.0489) 4.09593  4.06060)  0.14562)  0.18478)
0.122 3.9,4.0 500  4.0285  4.07668  4.04848  0.17124)  0.20458)
0.120 3.9,4.0 500  4.0196) 3.99655  4.01234)  0.21866)  0.24449)
0.118 3.9,4.0 500  4.0029 4.00035  4.00228)  0.26258)  0.28419)
0.115 3.9,4.0 360  3.9928  3.96936) 3.98329)  0.326412)  0.343113)
0.110 3.9,4.0 300  3.9488  3.04636) 3.94629)  0.429719)  0.442719)
0.107 3.9,4.0 300  3.9185  3.91%31)  3.91026)  0.493420)  0.504621)
0.104 3.9,4.0 200  3.87B8 3.87536) 3.87830) 0.557327)  0.567727)
0.102 3.9,4.0 200  3.8486) 3.84734  3.84728) 0.601628)  0.611329)
0.100 3.9,4.0 200 38185 3.81632) 3.81527) 0.647G29)  0.656229)
0.097 3.8,3.9 200  3.76B4)  3.76530) 3.76626) 0.717832)  0.726432)
0.093 3.7,3.8 200 36833 3.68729 3.68825  0.818037)  0.825737)

The mean-field values, andu, are obtained as the av- meson correlators are obtained with zero and finite momenta.
erage of the link variables in the Landau gauge, where th&he fermionic anisotropy is defined through the relativis-
mean-field values are used self-consistently in the fixing contic dispersion relation Eq.3.2). We assume a linear depen-
dition [6]. These results are also listed in Table |. The meandence ofé: on g in the vicinity of £&r=£. We use linear
field value of the temporal gauge field has a small error anghterpolation to obtainyt , the value ofye at which the
is close to unity.7yr=u,/u,, the mean-field estimate of relation&-= ¢ holds.
n=¢&lvyg, is close to the value ofy determined nonpertur-
batively by Klassen. This suggests that the tadpole improve-

ment works well on the anisotropic lattice also. Resuilt for the dispersion relation

_ o The parameters, yg) used in the calibration are listed in
B. Quark field calibration Tables II, 1ll, and IV for 8=5.75, 5.95, and 6.10, respec-
As described in Sec. Ill, we use the relativistic dispersiontively. As the meson operators at the source, we adopt the
relation in the calibration of parameters in the quark actionsmeared operators with appropriate smearing functions. For
Since the gauge field calibration is at the accuracy of 1%, w¢he light quark region, a Gaussian function is used as the
aim to tune the quark parameters to a similar level. smearing function, with a width of 0.2—0.4 fm. In the charm
For convenience, we choogeand yg as the input param- quark mass region, we also use the measured wave function
eters and determing, and «, from Eq. (2.5). Fixing «  for the smearing function. We measure the two-point func-
corresponds to fixing the bare quark mass in spatial latticéions for momentgp=n(2=/L), whereL is the spatial lattice
units. For each value ofi, v¢), the pseudoscalar and vector extent anch=(0,0,0), (1,0,0), (1,1,0), (1,1,1), and (2,0,0).

TABLE IV. Calibration parameters and results@t 6.10. Fork=0.124, 0.123, and 0.122, the dispersion
relation is fitted to a linear form in determinirgg . For the remainingc’s, a quadratic fit is applied.

K Input ¢ Neons yE (P9 ™ ¥ Mes(7£) my(7E)

0.124 4.0,4.1 600  4.0207)  3.6327)  3.99479  0.10085)  0.13797)
0.123 4.0,4.1 600  4.005) 3.86098  3.97355)  0.12941)  0.15825)
0.122 4.0,4.1 600  3.9981) 3.91369 3.976844)  0.15493)  0.17876)
0.120 4.0,4.1 400  4.04P9) 4.06445  4.04730)  0.20076)  0.21827)
0.118 4.0,4.1 200  4.0483 4.01452  4.03234)  0.24409)  0.257910)
0.115 4.0,4.1 200  4.0228  4.00841)  4.01930) 0.306712)  0.317613)
0.110 4.0,4.1 200  4.0138 3.99654  4.00743  0.407826)  0.416027)
0.107 4.0,4.1 200  3.9886) 3.98646) 3.98739)  0.469429)  0.476630)
0.104 4.0,4.1 200  3.9%33  3.95542  3.95236) 0.533131)  0.539631)
0.102 3.9,4.0 200 39182  3.92840) 3.92235)  0.577334)  0.583434)
0.100 3.9,4.0 200  3.8775 3.88332) 3.87927) 0.624428)  0.629829)
0.097 3.9,4.0 200  3.8832 3.83928) 3.83624)  0.693128)  0.698429)
0.093 3.8,3.9 200  3.7681) 3.77626) 3.77223)  0.790332)  0.795331)
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t

FIG. 2. Effective mass plots of PS and V mesonscat0.105, y.=3.8 on a=>5.75 lattice. From bottom to top, states with integer
momentum vectora=(0,0,0), (1,0,0), (1,1,0), (1,1,1), and (2,0,0). Horizontal solid lines represent the results of fits of correlators and the
fitting range. The statistical errors are represented by the dashed lines. The state=\{2t}0,0) is not used in the fit of the dispersion

relation at thisg.

All rotationally equivalentn’s are averaged. The standard therefore use only the four lowest energy states in the qua-
procedure is used in extracting the energy at each momeiglratic fit. On the other hand, the results of the lineavith

the lowest three stategnd the quadratic fit coincide with
The energies are then fitted to linear or quadratic forms irgood accuracy. For the few largest hopping parameters, the

tum.

p? to extract the fermionic anisotrog in each channel. In

higher momentum states suffer such large statistical fluctua-

the case of a linear fit, we use only the three lowest momertions that we always adopt the linear fit. Since at other values
tum statesn=(0,0,0), (1,0,0), and (1,1,0). We assume aof « the resultantr coincides with that of the quadratic fit,

linear dependence @f:-(yg) on vg, and this is indeed veri-

fied in several examples.

cal fluctuation.

The dispersion relation fot=0.105 at3=5.75 is shown

we adopt the linear fit for all values a&f at this 8. Since the

same method is adopted @& 5.95 at as8=>5.75, we do not
Figure 2 shows typical effective mass plots for the pseutepeat the explanation for the fitting procedure.
doscalar(PS and vector(V) mesons. The energies of finite
momentum states are successfully extracted from the regiomesons a{3=6.10 andx=0.115, which corresponds to a
in which the correlator shows plateaus, except for the lightessimilar quark mass ag=0.105 at3=5.75. The dispersion
quark regionx=0.120, which suffers severely from statisti- relation is much improved, and the quadratic fit is success-
fully applied including then=(2,0,0) state. Although the

The right panel of Fig. 3 shows the dispersion relation of

difference from the linear fit is small, as shown in the figure,

in the left panel of Fig. 3. Because of the rather large latticeve adopt the result of the quadratic fit to determipeexcept

artifact, the fit to the quadratic form i with the energy of

for the lightest quark region. For these three largestorr-

then=(2,0,0) state is not a good description of the data. Weelators with n=(2,0,0), and occasionally (1,1,1), suffer

0.44 ® PS(y.=3.8) B=5.75 4 0.13 F ® PS (1.=4.0) p=6.10 4
AV (1.=3.8) k=0.105 AV (y.=4.0) x=0.115
O PS (y.=3.7) O PS (y.=4.1)
0.42 AV (v,=8.7) 1 AV (y=4.1)
--- quadratic fit 0.12 | --- quadratic fit b
— linear fit — linear fit
0.40 E
IS =onf 1
3 0.38 E f
0.36 E 010 } J
0.34 k
0.09 | E
0.32 L L . L L L L L . L L
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.1 0.2 0.3 04 05
2 2
p p

FIG. 3. Dispersion relations of PS and V mesons. The left panel shows the date0at05 andy= 3.8 and 3.7 on th@=5.75 lattice.

The right panel shows the dataat0.115 andy=4.0 and 4.1 on th@@=6.10 lattice. Solid lines represent the linear fit and the dashed
lines show the quadratic fit.
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38 r 1 0.56 + 1
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FIG. 4. v dependence of: (left) and meson massésght) at k=0.105 on theB=5.75 lattice.

from such large statistical fluctuations that the energy of thespectrum is an important problem, which will be examined
states cannot be reliably extracted. In these cases, we fittéd the next subsection.
the energy to the linear form.

Fit of £
Calibration of y¢ for each quark mass To representy® as a function ofx, we introduce the
In the left panel of Fig. 4¢¢ is plotted as a function of¢ quark mass as
for k=0.105 atB=5.75. It is clear thatr depends linearly
on ye . The results ak=0.101, 0.110, and 0.112 show simi- 11 1 a1
lar behavior. We therefore assume linear dependence also for M=%\ % wo)” “.

other values ofx, and interpolateée to find y§ in each
channel. The numerical results foit "9, y*™) ‘andy*  This is similar relation as fomy, the bare quark mass in
averaged over PS and V mesons are listed in Tables Il-I\Yemporal lattice units, while the present form is independent
for eachgB. These tables also show the interpolated masses off y¢ . . is determined from the massless point of the pseu-
PS and V mesons. We find a tendency fg("9 to be doscalar meson mass. We extrapolatgs linearly in 1/
slightly larger thany£ ) in the wholex region. This devia- using the two largest values af and find«x.= 0.1264Q5)
tion seems to become smaller for largerThe reason for the at 8=5.75, 0.1259¢%6) at f=5.95, and 0.12558) at g8
discrepancy is understood to be the systematic errors of 6.10.
O(aa), which will be examined in detail in the next subsec-  In the calibration at eack, we found that the value off
tion. is easily determined preciselyo the level of 1%, while it

We also plot theyr dependence of the meson masses abecomes more difficult as increases towara.. However,
k=0.105 andB=5.75 in the right panel of Fig. 4. This itis expected thatf smoothly approaches a certain definite
shows that the meson mass is linearynin this range, and value in the limit ofm,— 0, since in this limit our form of
linear interpolation can be applied successfully to determinection is simply a direct generalization of the clover quark
the meson masses gf . Although theyr dependence of the action on an anisotropic lattice. In fact, as shown in Sec.
meson mass is in general unknown for other regions,afe 11 B, yf depends linearly omnS at the tree level. In taking
expect that the linear interpolation will work with good ac- the limit of my—0 for ¢ , the precise mean-field values do
curacy. The meson masses #t are also listed in Tables not matter, since in the definition o tadpole improvement
lI-1V for each 8. How the uncertainty inyf affects the is applied as a multiplicative factofy=u./u, . Therefore

TABLE V. Fit results for yf .

B Fit type o {1 &2 x*INgt ¥F(mg=0)
5.75 linear 0.25589) - 0.23012) 1.83/11 3.00014)
quad. 0.256(@3) —0.007(28) 0.24769) 177110 3.90134)
5.95 linear 0.24908) - 0.18915) 3.52/11 4.016L3
quad. 0.24668L8) 0.03623 0.09561) 1.01/10 4.05B0)
6.10 linear 0.24709) - 0.14314) 4.44 /11 4.03414)
quad. 0.249a8) ~0.022(24) 0.2063) 3.55/10 4.0128)
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the most reliable way to determine the valuegf in the
light quark region is a global fit off , assuming the appro-
priate form ofm, dependence.

We fit the result of 1§ to a linear form |nm and a
quadratic form inm, . The result of the fits is Ilsted in Table
V and also shown in Fig. 5 as the solid and the dashed
curves. Since the points obtained fpf are with different .
numbers of configurations, these points do not correlate in arg*
obvious way. We quote the errors agd of the uncorrelated
fit in Table V. As shown in this table and figure, the linear fit
in mé well represents the data. The value &f which is
1/y§ in the chiral limit, is close to the tree-level resuli¢1/
=1/4, which implies that the tadpole improvement works
well. Apart from the lightest quark mass regioyf; is deter-
mined within 1% accuracy, and there the curves of the two
fits are consistent with each other. In approaching the chiral
limit, there is a systematic error concerning the fit form, as
well as the statistical error. We estimate the latter by the errot
of the fit in £, (from the quadratic fit irmé), to be about 1%.
This relatively small statistical error is due to the global fit of
1/y¢ with the assumed form ofi, dependence. The system-
atic error in adopting a specific form of fit is estimated by the
difference between these two fits and is also at the 1% level
Adopting the linear form |nmq, we conclude thatyf is .
determined under the assumed dispersion relation within 10E
statistical accuracy in the whole quark mass region below the
charm quark mass, while in the chiral limit there is an addi-
tional 1% systematic uncertainty concerning the form of the
fit.

C. Uncertainties in calibration

In the last subsection, we determingfl as a global func-
tion of my. This expression inevitably suffers from system-
atic uncertainties as well as the statistical uncertainty:

y& = y%(POP) | 5 (stad 4 5 [O(aa)] 4 5y[F0(a2)]

(+5,y§:chiral))_ (42)

y£(Pr°P) represents the proper value of the bare anisotropy.
5y is the statistical error in determination ¢f , and is

at the 1% level. The last two terms are the main sources 0%
systematic errors due to finite lattice artifacts. The first one, =
5yP@! is from the tree-level approximation of the clover
coefficients. We estimate the size of this error by the differ-
ence between the values ¢f determined with PS and V

mesons. The second systematic ersan®@)! | is estimated

by comparing the results of the calibration from two different
forms of the dispersion relation that differ Iy(a?). In ad-
dition to these systematic uncertainties, in the chiral limit
there is also a systematic error concerning the form of the fit
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of y£ in mg. FIG. 5. 1kf vs 1k at eachB. Solid lines show the fit linear in
Another important subject is to estimate how the observm; while the dashed lines represent the fit quadratimip
ables are affected by the uncertainty A . We study the

response of meson masses with respect to the changg of in the quark mass; hence the above analysis is adequate for

at eachx, from which the effect ofyr on the meson masses the relatively heavier quark mass region, suchmgsim,.

for a given quark mass is approximately estimated. StrictiWe postpone the study of the effect on the light hadron spec-

speaking, changingg for a fixed « induces a slight change trum to the end of the next section.
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04 T T T T ] tistical fluctuation and hence the resultapt contains a
] large uncertainty. We assume that t©éaa) effect in the
02 f ] AT )
] calibration is also small at thig.
X S— E@-q% =lxdx R2Q 3 ) . ,
] O(a“) systematic uncertainty
O B=575 ] . : : .
-02F A g=5.95 b Although we employed the continuum dispersion relation,
L L L L ] this introduces a systematic error@{a?) to the calibration
o B=6.10 ] of yg. In order to estimate the typical size of this error, we
06 | : . * : D%
. 1 compareyg determined above withg g, , the result ob-
& oal ] tained using the dispersion relation from the lattice Klein-
] Gordon action, Eq(3.3). Figure 7 shows this comparison at
02 ] B=5.75 and 6.10. In extractiné from the Klein-Gordon
dispersion relation, we fit codf(p) to a linear form in
0.0 f------= & -I--O-g-s5pn8-9--8----- - > sird(pi/2) using the three lowest momentum states. As ex-
] plained in Sec. lll, the expected difference&f and éxg is
0 s o0 o 1o s O(m?), wherem is the meson mass. Although the explicit
1/ relation betweeryg i, and y¢ is unknown, one can expect

that the difference between them is al®¢m?), and hence
will increase with increasing quark mass. This behavior is
clearly observed in Fig. 7. Table VI is the result of the fit of
¥ ko) to a linear form inmy .

We find a small difference between the results with the
Since we use th®(a)-improved quark action, the main relativistic and Klein-Gordon dispersion relations in the
contribution from theO(a) lattice artifact is absent. How- small quark mass region. This difference decreases with in-

ever, since the clover coefficients are not tuned beyond thereasing 3, and seems to be sufficiently reduced @t
tree level, theéd(aa) error still remains, although the tadpole =6.10. The typical size of the difference jif s at the chiral
improvement partially removes this effect. An appropriatelimit is less than 3%, 2%, and 1% gt=5.75, 5.95, and 6.10,
probe of this systematic effect on the calibration is the dif-respectively. The important feature is that the two procedures
ference between theg’s of the pseudoscalar and vector me- tend to coincide with each other with increasiigWe also
sons. Figure 6 showsyf=y;fP9—tM At =575,  observe that the difference betwegh and yf g increases
there is a systematic difference ofF from zero except in  in the large quark mass regiom,>0.2a 1 This is consis-

the small quark mass region, where the statistical error isent behavior, since there the Klein- Gordon dispersion rela-
dominant. At3=5.95, §y{ is consistent with zero in the tion fails to incorporate the quark mass dependence properly,
whole « region. This implies that th®(«a) error in the and VE(KG) is expected to be larger thapf at O(m?).
calibration is sufficiently reduced at thj8. In the case of Therefore we conclude that the uncertainty due to the as-
B=6.10, 5v¢ is also consistent with zero except in the light- sumed form of the meson dispersion relation is under control
est quark region. In this region, precise determination of thend smoothly disappears on approaching the continuum
energy in finite momentum states is difficult due to the stadimit.

FIG. 6. 6yf=y£P9— =M at B=5.75 and 5.95 in the upper
part and 6.10 in the lower part.

Difference betweeny* "9 and yx ")

T T T T T T T 0.28 T T T T T T T
B=5.75 p=6.10
028 b © Relativistic DR i 027 } © Relativistic DR i
m  Lattice Klein-Gordon m  Lattice Klein-Gordon
0.27 | E 0.26 | E
= j’i =
0.26 | i E 025 | 4
0.25 | H_}EE£¥ i ] 0.24 | ]
0-24 I L ' I I ' I 0.23 I L ' I I ' I
75 80 85 90 95 100 105 110 115 75 80 85 90 95 100 105 110 115

1/x 1/x

FIG. 7. Comparison of the results of calibrations with two types of dispersion relation. The curves represent the result of a linear fit in
mj. Solid lines are the fit results with the relativistic dispersion relation and the dashed lines are those with the lattice Klein-Gordon
dispersion relation.
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TABLE VI. The result of a linear fit ir‘mf1 of YE(KG) , the tuned TABLE VII. Quark parameters used in hadron spectroscopy.
bare anisotropy with the Klein-Gordon dispersion relation.
B Ve Values ofx Neonf
H 2 * —
p Fit type o 2 XNar 75 (mg=0) 5.75 3.909 0.1240,0.1230,0.1220,0.1210 200
575 linear  0.248®) 0.11211) 2.33/11 4.01€13 5.95 4.016 0.1245,0.1240,0.1235,0.1230 100
595 linear 0.244@) 0.07114) 2.14/11 4.088L3 6.10 4.034 0.1245,0.1240,0.1235,0.1230 100

6.10 linear 0.24840) 0.03915 1.59/11 4.02616)

o o certainty of y§ is around 0.04. The right panel in Fig. 8
Uncertainty in meson mass due to calibration error implies that the uncertainty in the meson mass is less than
Another important issue of the systematic errors is howl%. This uncertainty is most severe in the heavy quark re-
the uncertainty inyg is transmitted to the observables. As angion, and becomes milder as the quark mass decreases.
important example, here we focus on the effect on the meson While we find that the meson mass at a certaiis not
masses. too sensitive to the uncertainty gff , the same argument
Since we linearly interpolate the meson masseginwe  does not hold for the chiral limit. Since the pseudoscalar
obtaindm/dyg at y= y§ from the slope of the linear fit. In  meson mass becomes zero in the chiral limit, the relative
Fig. 8, we showdnm/dyg, the response of the meson mass touncertaintyémps/mpsg for a fixed « near the chiral limit is
the bare anisotropy, #=6.10 in two ways. Similar features of course very large. However, this is not the correct way to
are found in the results 8=5.75 and8=5.95. In the left ~estimate the uncertainties in the mass spectrum in the chiral
paneldm/dyg is shown as a function of &/ In the case of limit. What one is really interested in for the chiral limit is
the vector meson, it seems to decrease linearly with increagot the change in the hadron masses including the pion mass
ing quark mass from zero at the massless limit. On the othéier a fixed« but the change in the hadron masses except the
hand, for the pseudoscalar mesdmydyg is slightly posi- pion mass at the point where the pion becomes massless.
tive in the vicinity of 1k, . This behavior may be due to the Since the critical hopping parametet, is affected by the
uncertainty in the definition ok, because ifc is properly — change inyg, one needs to treat the chiral limit carefully. In
related to the fixed quark mass increasinrgimplies increas- Sec. V, we discuss the uncertainties of the hadron spectrum
ing the propagation in the temporal direction; hence it correin the chiral limit based on an extrapolation in terms of the
sponds to decreasing quark mass. Therefore, the presdpgeudoscalar meson mass squared insteadkof 1/
analysis may not be adequate for estimating the response of
masses with respect tg- in the vicinity of the chiral limit.
Observing Fig. 8, one can see that the range of quark masses
larger than the strange quark mass does not suffer from the In this section, we have implemented the anisotropic
ambiguity in the definition ofk. O(a)-improved Wilson action in the region of quark masses
We have no clear explanation as to wdiyvdyr seems to  up to around the charm quark mass, at three valugs aft
be proportional to the quark mass. In practice, it is a goodk=4.0. The fermionic anisotropyr is extracted from the
feature that the ambiguity off has only little effect on the meson dispersion relation. Then we find the value of the bare
meson mass in the small but nonzero quark mass regio@nisotropy parameteyy at which&g= ¢ holds. The value of
since there a relative change of mass is significant. Except i in the massless limit is obtained by extrapolating the data
the lightest quark mass region, the determinationypfis by fitting to a linear form inm?, wherem, is the naively
directly performed with 1% accuracy, which means the un-defined quark mass. This is the most reliable way to deter-

D. Summary of calibration

0.05 . . . . : : . 0.10
p=6.10 O Ps B=6.10 o Ps
AV 0.05 | e AV
0.00 ?% -
®
2 0.00 b
-0.05 |- 2 1 & i
S 2 2
5 & £ wosf %
£ 2 o
k-] & £
—o0.10 | a - = ]
2 —0.10 | e
& : &
8
-0.15 | & 1
—0.15 F & a
a
-3
e o
_0.20 . . . . . . \ 020 . . . . . . .
75 80 85 90 95 100 105 11.0 115 75 80 85 90 95 100 105 11.0 115
1/x 1/x

FIG. 8. The response of meson masses to a change af 8=6.10. The left panel showdm/dyg, while the ratio (Ih)dm/dyg is
shown on the right. The results for the pseudoscalar and vector mesons are represented by circles and triangles, respectively.
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FIG. 9. Effective mass plots for octet and decuplet baryon correlators with degenerate quark m@ssé&srat Horizontal solid line
represent the fit range and the mass from the single exponential fit.

mine y¢ for the small quark mass region, since there the B=5.95:{,=0.24908), ¢(,=0.18915),

statistical fluctuation in finite momentum states is very large.

The fit of 1/yf to a linear form irmf1 seems quite successful, k.=0.125926), (4.5
and y¢ at the chiral limit is close to the tree-level valge

The statistical uncertainty ig is estimated as on the order B=6.10y=0.24799), (,=0.14314),

of 1% in the whole quark mass region explored. In the chiral

limit, there is also 1% systematic uncertainty concerning the k.=0.125584). (4.6)
form of the fit. Here we summarize the main result of the

calibration, the expression forf at a givenx: To examine the uncertainty in the calibration, we have

also carried out the following analyse@) The difference

1 B » 111 betweenyg for the pseudoscalar and vector mesons, which
y—é(mq)—goJrgzmq, mq_z_g(;_ K|’ 4.3 signals theO(aa) systematic error. We observed that this
difference decreases with decreasing lattice spacing, and is
already consistent with zero @=15.95. (ii)) Comparison of
B=5.75¢4,=0.25589), {,=0.23012), y£ with the continuum and the Klein-Gordon dispersion re-
lations. This is for an estimate of the size of 1B¢a?) sys-
k.=0.126405), (4.9 tematic uncertainty. The results with the two dispersion rela-

TABLE VIII. Hadron spectrum ai3=5.75. When the quark masses are degenerate,«i,& x,, the
3 -type andA-type octet baryon correlators are identical.

K1 K2 Mps my Mocy(s) Moci(A) Myec

0.1210 0.1210 0.229097) 0.282110) 0.425717) - 0.456424)
0.1210 0.1220 0.217148) 0.273Q11) 0.414618) 0.416118) 0.447225)
0.1210 0.1230 0.205041) 0.264@12) 0.403419) 0.406819) 0.438327)
0.1210 0.1240  0.192684) 0.255213) 0.392G20) 0.397721) 0.429929)
0.1220 0.1210 - — 0.40589) 0.404219) 0.438127)
0.1220 0.1220 0.204880) 0.263712) 0.394619) — 0.428928)
0.1220 0.1230 0.1921382) 0.254413) 0.383120) 0.385221) 0.419930)
0.1220 0.1240 0.179135) 0.245815) 0.371321) 0.376@22) 0.411433)
0.1230 0.1210 - - 0.38631) 0.382@20) 0.420230)
0.1230 0.1220 - - 0.37422) 0.372421) 0.410932)
0.1230 0.1230 0.178864) 0.245415) 0.362923) - 0.401835)
0.1230 0.1240 0.165037) 0.236417) 0.350624) 0.353825) 0.393239)
0.1240 0.1210 - - 0.36725) 0.358722) 0.403237)
0.1240 0.1220 - - 0.3556%06) 0.349G24) 0.393840)
0.1240 0.1230 - - 0.34827) 0.339425) 0.3845%44)
0.1240 0.1240 0.150160) 0.227221) 0.330328) — 0.375751)
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TABLE IX. Hadron spectrum a8=5.95.

K1 K2 Mps my, Mocy(s) MociA) Myec

0.1230 0.1230 0.145800) 0.185310) 0.278817) - 0.303625)
0.1230 0.1235 0.138961) 0.180411) 0.272617) 0.273418) 0.298726)
0.1230 0.1240 0.131943) 0.175511) 0.266218) 0.268019) 0.293827)
0.1230 0.1245 0.124746) 0.170713) 0.259619) 0.262520) 0.289G30)
0.1235 0.1230 - - 0.26788) 0.266618) 0.293727)
0.1235 0.1235 0.131943) 0.175411) 0.261219) - 0.288829)
0.1235 0.1240 0.124625) 0.170%12) 0.254619) 0.255720) 0.283931)
0.1235 0.1245 0.117097) 0.165614) 0.247820) 0.250121) 0.279G33)

0.1240 0.1230 - - 0.25620) 0.253919) 0.283931)
0.1240 0.1235 - - 0.24981) 0.248420) 0.278933)
0.1240 0.1240 0.117027) 0.165414) 0.242721) - 0.274@35)
0.1240 0.1245 0.109080) 0.160516) 0.235622) 0.237@23) 0.269238)
0.1245 0.1230 - - 0.24433) 0.240821) 0.274337)
0.1245 0.1235 - - 0.237834) 0.234822) 0.269339)
0.1245 0.1240

- - 0.23085) 0.228924) 0.264442)
0.1245 0.1245 0.100633) 0.155%19) 0.222926) - 0.259747)

tions tend to coincide with each other on decreasing the (i) By taking the central value of= y£ we obtain the
lattice spacing. The behavior in the large quark mass regiolight hadron masses in the strange quark mass regign

is consistent with the expected behavi6ii) Response of <m,<2mg. By extrapolating masses im3g, the hadron
meson masses to the changeypf. The effect of uncertainty spectrum at the physical light quark mass is determined. We
of y£ on the meson masses is less than 1%yfifis deter- compare our result with the result by the UKQCD Collabo-
mined at this accuracy. This result is applicable to the relaration[15], which was obtained on an isotropic lattice with
tively heavier quark mass region, such mg<m,, and O(&)-improved quark action,

therefore in this region the errors in the calibration are under (i) We study the response of the light hadron spectrum to
control. a change of the anisotropic parametgr— yf + dy. The

extrapolation inmﬁ,S is significant in circumventing the un-

certainty in the definition of.
V. LIGHT HADRON SPECTROSCOPY

In this section, we apply the results of the last section to A. Calculation of hadron spectrum

the calculation of the light hadron spectrum. Our analysis is The spectroscopy of light hadrons is performed on the
performed in two steps. same lattices used in the calibration, but with smaller num-

TABLE X. Hadron spectrum aB=6.10.

K1 K2 Mps my Moct(s) MociA) Myec

0.1230 0.1230 0.129%P29) 0.15876) 0.239411) - 0.259017)
0.1230 0.1235 0.122830) 0.15386) 0.233212) 0.234012) 0.254218)
0.1230 0.1240 0.116031) 0.14917) 0.226912) 0.228812) 0.249519)
0.1230 0.1245 0.109033) 0.14468) 0.220413) 0.223613) 0.245121)
0.1235 0.1230 — - 0.228R2) 0.227312) 0.249319)
0.1235 0.1235 0.115931) 0.14897) 0.221913) - 0.2445%20)
0.1235 0.1240 0.108882) 0.14428) 0.215413) 0.216613) 0.239922)
0.1235 0.1245 0.1015%33) 0.13989) 0.208714) 0.211214) 0.235524)
0.1240 0.1230 - - 0.21714) 0.214813) 0.240@22)
0.1240 0.1235 - - 0.21084) 0.209314) 0.235224)
0.1240 0.1240 0.101423) 0.13958) 0.203814) - 0.230626)

0.1240 0.1245 0.093685) 0.135210) 0.196815) 0.198316) 0.226330)
0.1245 0.1230 - - 0.20%85) 0.201715 0.231428)

0.1245 0.1235 - - 0.199106) 0.196@15) 0.226730)
0.1245 0.1240 - - 0.191®7) 0.190316) 0.222134)
0.1245 0.1245 0.085336) 0.131@12) 0.184518) - 0.218041)
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bers of configurations. The parameters are listed in Table
VII. At each B8, we use four values ot corresponding to the
quark massesi;—2m; . In this region, we consider that, is
sufficiently small so that we can adopt the valueygfin the
massless limit. Therefore the bare anisotropy is set to the
central value ofyg at my=0, which is determined in the
calibration as the linear form imé.

We use the standard hadron operators and procedure to
extract the hadron masses. The quark propagators are
smeared at the source with a Gaussian smearing function
with the deviation=0.4 fm in the Coulomb gauge. The pe-
riodic boundary condition is adopted in all four directions for
the quark field. For baryons, two of the quarks are treated as
having degenerate masses. Then the quark content of the
baryons is specified by twa's, x; and «,, for a pair of
quarks and the other quark, respectively. Figure 9 shows the
effective mass plot for octet and decuplet baryons with de-
generate quark masses= k,. The meson correlators are
fitted to a single hyperbolic cosine form. For baryons, we
apply a single exponential fit in the region in which there is
negligible contribution of the negative parity baryon from
the other temporal boundary. The results of the fit are listed
in Tables VIII-X. For mesons, since the orderof and x,
is unimportant, the masses for the exchanged sek pf«>,)
are omitted. The masses of thetype octet baryons at de-
generate £, ,k,) are also omitted, since they are identical to
the masses of thE type.

B. Extrapolation to the chiral limit

In order to avoid ambiguities in the definition of the quark
mass, we extrapolate the hadron masses to the chiral limit in
terms of the pseudoscalar meson mass squared, instead of
1/k. We assume the relation

Ma (Mg, M) =B(my +my); (5.1)

then for degenerate quark masseg=m, m2P3=ZBml
holds. Then instead ofm; (i=1,2), one can use
mp<g(m; ,m;)? as the variable in the chiral extrapolation. For
other hadrons, vector mesons and octet and decuplet bary-

ons, we also use the linear relations
my(m;,m;)=my(0,0)+ By(m;+my,), (5.2

moct( mq,m; :ms) = moct(0,0,0) + Boct( m1+ m2+ m3)(1 )
5.3

Mged My, My, M3) =My 0,0,00 +Bged My +my+ m3g- )
5.4

The hadron spectrum and the result of the fit are shown in

0.10 . . L Fig. 10. The horizontal axis is the averaged pseudoscalar
0.000 0.005 , 0010 0.015 meson mass squared:
< mPs (m|) >
FIG. 10. The masses of vector mesons and octet and decuplet Ng 1 Ng
baryons together with the result of linear fits. Only theype octet (mag(m;))y=— 2 Mag(M;,mM;) = +— 2, 2Bm
baryon is shown. The filled symbols correspond to the masses at the Ng =1 Ng =1
physicalu, d, ands quark masses with the scale setrgy (5.5
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TABLE XIl. Hadron spectrum for physical quark masses with the scale seg.by

Mass(GeV) mérg Ref.[15]
B=5.75 B=5.95 5=6.10 B=5.75 B=5.95 B=6.10 cont.

0.83211) 0.84617) 0.89512) 2.10528) 2.14142  2.26530)  2.3516)
0.925190) 0.93813) 0.97710) 2.34223)  2.37534) 2.47325 25412
1.018571) 1.03110) 1.059 8 2.57818) 2.61026) 2.68021)  2.72977)
1.17516) 1.15522) 1.19718)  2.97440)  2.92455  3.03245  2.9224)
1.26013) 1.25319) 1.28316)  3.19034)  3.17247)  3.24840)  3.2220)
1.28114) 1.26819) 1.30216)  3.24235  3.21149)  3.29541)  3.2319)
1.38712) 1.38117) 1.40615  3.51031) 3.49743) 3.55837)  3.5415)
1.40329) 1.44041) 1.52141)  3.55372  3.6510) 3.8510) 3.8637)
1.49525) 1.53236) 1.60237) 3.78463) 3.87190) 4.05593)  4.1529)
1.58722) 1.62331) 1.68332  4.01754) 4.10978) 4.26081)  4.4422)
1.67919) 1.71526) 1.76328)  4.24946)  4.34166)  4.46470)  4.7217)

*

*

*

LDomnMBEINMEZe XD

with Ng=2 for mesons andl,=3 for baryons. The\-type  though we ourselves do not perform the continuum extrapo-
baryon is not shown in the figure for clarity. The linear fit lation because of a lack of sufficient numbersgoés well as
seems to be successful. the statistical accuracy.

. Scale set by ¢
C. Spectrum at physical quark masses

To determine the hadron masses at the physicdl and The hadronic radius, has already been obtained in Sec.

physic . . The corresponding values of spatial lattice cutoff are
s quark masses, one needs to set the scale of the lattice. /€ nd in Table |. The PS meson masses sauared correspond-
do not distinguish thes and d quark masses, and express, ' 4 P

their mass asn,. We adopt two definitions, through the N9 {0 My andms are then defined by, =139.6 MeV and
hadronic radius ,, and through th&<* meson mass. These Mk=495.7 MeV (isospin averaged respectively. These
two methods were also adopted by the UKQCD Collaboradefinitions are in accord withl5]. The hadron masses ex-
tion in [15], and are convenient for comparison of our datatrapolated or interpolated to the physical points are shown in
with theirs. In[15], values of the clover coefficient were Fig. 10 and listed in Table XI. For comparison with the re-
determined in two ways: by a nonperturbative renormalizasults in[15], we also list the hadron masses multiplied by
tion technique(NP) [16], and tadpole improvemerTAD) roé in Table Xl. In the latter casef appears to convert a
[12]. Then the masses were extrapolated to the continuumuantity in spatial lattice unitsr) to one in temporal lattice
limit by a simultaneous fit of these two types of data to aunits(massep In our data, differences between the results at
linear form ina? for NP and a quadratic form ia for TAD. B=6.10 and 5.95 are rather large compared with the differ-
We compare our hadron spectrum at the physical quarknces betweef=5.95 and 5.75. This would be partially due
masses with the result in the continuum limit [df5], al-  to the differenia dependence of th®(aa) andO(a?) lattice

TABLE XlI. Hadron spectrum for physical quark masses with the scale setly The parameted is
also quoted; while it is dimensionless quantity.

Mass(GeV) m/ My« Ref.[15]
B=5.75 B=5.95 B=6.10 B=575 B=595 [B=6.10 cont.

0.79611)  0.79516)  0.80211) 0.89412 0.89018 0.89812  0.921(
0.89411)  0.89416)  0.89411) - - - -
0.99212)  0.99316) 098611  1.10913 1.11018 1.10312) 1.110(",%)
112515  1.08721) 1.07516) 1.25917) 1.21623) 1.20218)  1.14(",5)
1.21714)  1.19420) 117515  1.36X15 1.33§22) 1.31517)  1.29(",d)
1.23614)  1.20720) 1.191416)  1.38416) 1.35123) 1.33317)  1.29(",3)
1.34614)  1.32821) 1.30715  1.50616) 1.48523) 1.46217)  1.45(",%)
1.34327)  1.35439) 1.36337)  1.50430) 1.51543) 1.52541)  1.50("17
1.43925)  1.45235  1.45433  1.61028) 1.62439) 1.62637)  1.64('1)
1.53523) 154932  1.54429) 171725 1.73336) 1.72732)  1.79(,)
1.63121)  1.64730) 1.63425) 1.82524) 1.84233) 1.82828)  1.93(" [
0.385947)  0.389695)  0.362147)

*

*

*

“RPnmnmMeEnmMeEzZze X
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' y ' lar tendency to that when the scale is setrpyNo signal of

% experiment inconsistency with the results on the isotropic lattice is
O this work found

0.5 m UKQCD(NP) '
o UKQCD(TAD)

D. J parameter

2

The parameted was introduced to probe the quenching
effect in[17], and defined as

FEe & s O s

Vo2
m,
dmgs my

m,dm,/dm.g
o
o
T

J=

IMpg=Mmyx Imy

03 | . It is known that the quenched lattice simulation does not
reproduce the experimental valde=0.482); it gives an
. about 20% smaller value. We show our resultan Fig. 11,
0.0 05 1.0 as a function of lattice spacing determined ky We find
a, [GeV™'] that our results are consistent with those of the UKQCD

Collaboration on isotropic lattices in the quenched approxi-
FIG. 11. The parametel. Thea, is set by using,. Data from  mation.

UKQCD Collaboration(square symbojsare taken from Ref{15]
on isotropic lattices, and slightly horizontally shifted.

E. Covariance of correlators

artifacts, and also due to the statistical fluctuation. Our re- L€t us consider the pseudoscalar correlator
sults for the hadron masses seem to approach the continuum 1

. . : . C 1) =(Opg(X)Op 40
results of the UKQCD Collaboration on an isotropic lattice ps(P.1)=(Op<(x)Op<(0))

[15]. — Z%(p)exd —E(p)t]  (larget) (5.7)
Scale set by g« with Z(p)=(0|O(x)|P(p))/v2E(p). Here we employ the

. . covariant normalization. For the local pseudoscalar densit
In the second caseg+ =893.9 MeV (isospin averaged P y

is used to set the lattice scale. First we interpolate the vectd?Peratoro(x) =a(x) ysq(x), if Lorentz covariance is suffi-

meson mass to the point where the ratio of PS and V mesoff€ntly restoredZ(p) y2E(p) does not depend on the mo-
masses is equal to the ratio of the physical valug€®ofand ~ Mentump. Then

K mesons. Then this vector meson mass defines the lattice

scale. This results in the spatial lattice cutoffs 133 (D)= E(p)Z(p)?
1.52527), and 1.81722) GeV at =>5.75, 5.95, and 6.10, D e Z(0)2
respectively. Then the values oiE,S corresponding to the

(u,d) ands quark masses are determined with the experiprobes the restoration of covariance as a deviation from
mentalK and 7 meson masses. The hadron masses at physunity. In Fig. 12, we show the momentum dependence of
cal quark masses are listed in Table XII. We observe a simiR(p) measured foB=5.95 and 6.10. At eac, the quark

(5.9

B<5.95  x=0.123 - B=6.10  x=0.123
15} 1 15 1
s o) s
N N
c10F T [ {1 10 o ) .
oy o
= =
N N
3 - =
“os { Dost ]
0.0 1 L L L L 0.0 L L ' ' L
0 1 2 3 4 0 1 2 3 4
Py p ey

FIG. 12. The covariance of the pseudoscalar correlators. The left paneBis &95 and«=0.1230, and the right g8=6.10 andx
=0.1230.
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0.50 T T T T T T T T
v Vector meson B=5.75 B=6.10
a
045 [ Octet baryon 0.25 + ¥ Vector meson
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0.40 . Decuplet baryon
& 0.35 " 0.20 -
@ @
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0.30
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0.15 . . ) . . 0.10 . A .
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FIG. 13. The spectra with shifteg (filled symbolg together with the results aif (open symbols The solid lines and dashed lines
represent the fit results af-= y§ and y§ + 5y¢, respectively.

mass is the largest one used in the light hadron spectroscogspecies, the difference is at most around 1%. This implies
We find thatR(p) at finite momentum is consistent with that the uncertainties of the hadron masses at the physical
R(p=0), while higher momentum states suffer from large (u,d) ands quark masses are about half the uncertainty in

statistical fluctuation. This feature is particularly important in - . With the relativistic dispersion relationy} at my=0

the calculation of form factors, in which the finite momen- a5 peen determined at egghwithin about 2% ambiguity:

tum states play an essential role. the statistical error of 1% and the systematic error of 1% in
the form of the fit. Therefore there is 1% level uncertainty in
F. Systematic errors of the spectrum from calibration the hadron spectrum due to the uncertainty in calibration.

his feature makes the anisotropic lattice promising for fu-

To estimate the systematic effect due to the uncertainty o ure physical applications.

calibration, we obtain the spectrum at the sarig with
slightly shifted bare anisotropy;= yf + dyg. We setéye
=0.1, which implies about 2.5% shift of the bare anisotropy.
Figure 13 shows the result for shifteg: together with the In this paper, we studied th@(a) improved quark action
result foryg , for 5=5.75 and 6.10. There are small system-on an anisotropic lattice with anisotrogy=a,/a,=4. The

atic downward shifts in the fitted lines. The spectra at thebare anisotropyyg , for which &= ¢ holds, is determined
physical quark masses are listed in Table XIll as the dimenfor the whole quark mass region below the charm quark
sionless combinationsiér o andm/my«. The difference be- mass, including the chiral limit, at 1% statistical accuracy. In
tween the masses with: and yf is slightly amplified to- the massless limit, there is also about 1% systematic uncer-
ward the chiral limit. Even for the lightest mass in eachtainty in extrapolatingyg to my=0.

VI. CONCLUSION

TABLE XIIl. Spectra with shiftedyg in dimensionless combinations. The dimensionless parardaser

also listed.
mér m/mg

B 5.75 5.95 6.10 5.75 5.95 6.10
p 2.08426) 2.121(40) 2.23928) 0.891(11) 0.89417) 0.89811)
K* 2.32221) 2.35732) 2.44824) - - -

@ 2.56017) 2.59224) 2.65819) 1.10912) 1.11q17) 1.104212
N 2.94637) 2.91352 3.01943 1.26016) 1.22322) 1.214217)
A 3.16632) 3.16145) 3.23639) 1.36315) 1.34121) 1.32316)
3 3.21633 3.19946) 3.28239) 1.38315) 1.35622) 1.34Q17)
=] 3.48629) 3.48541) 3.54535) 1.50715) 1.49022) 1.46817)
A 3.51466) 3.61496) 3.80896) 1.503298) 1.51741) 1.52739)
3* 3.74858) 3.847185) 4.01485) 1.61026) 1.62537) 1.627134)
B* 3.98350) 4.08Q473 4.221(75) 1.71724) 1.73434) 1.72830)
Q 4.21743) 4.31362) 4.42765) 1.82423) 1.84232) 1.82927)
J 0.383843) 0.387186) 0.361442)
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The uncertainties in the calibration due to the discretizaambiguity at3=6.10. The relative errors in the hadron spec-
tion errors are studied by changing the physical inputs otrum are half of those inf . Since the contribution from the
conditions.(i) We have shown that the dispersion relationssecond type of error vanishes in the continuum limit, we
for the pseudoscalar and vector mesons give valuegrof expect to obtain the hadron spectrum to 1% accuracy in the
that differ by 1% at3=>5.75, while they show no difference continuum limit. This result is encouraging for further appli-
at 8=5.95 and 6.10(ii) Two different choices of the lattice cations. The anisotropic lattice would already be applicable
dispersion relation, namely, the naive continuum form ando quantitative studies that require a few percent accuracy. To
the Klein-Gordon form, also lead to results that differ by 3%achieve higher accuracy, nonperturbative tuning of the clover
for =5.75, but we found no difference @t=6.1 with m, coefficients is required.
<0.2a;*. These systematic uncertainties tend to vanish to- Since the range of quark masses where the systematic
ward the continuum limit. errors are under control covers the charm quark region, it is

The light hadron spectrum was studied using the centrailso important to apply the present anisotropic lattice simu-
value of the tuned bare anisotropst (m,=0). We found lation to the charmonium anl meson systems.
that it is consistent with the result on the isotropic lattice
obtained by the UKQCD Collaboration. It was found that a
change ofyf by 2% would lead to a change of the spectrum
by 1% for the physical quark masses. We also investigated We thank J. Harada, A. S. Kronfeld, O. Miyamura, N.
the Lorentz invariance of the matrix element of the pseudoNakajima, Y. Nemoto, H. Suganuma, and T. T. Takahashi for
scalar operator as a consistency check. useful discussions. The simulation was done on a NEC SX-5

The main disadvantage in using the anisotropic latticeat the Research Center for Nuclear Physics, Osaka Univer-
would lie in the additional systematic uncertainty caused bysity and a Hitachi SR8000 at KEKigh Energy Accelerator
the calibration. There are two types of errorjifi. The first  Research OrganizatipnH.M. was supported by the Japan
type consists of the statistical error and the error in the chiraBociety for the Promotion of Science for Young Scientists
extrapolation, which was estimated to be at the 2% level. Thand also in the early stage of this work by the center-of-
second type consists @i(«a) andO(a?) systematic uncer- excellencgCOE) program at RCNP, Osaka University. T.O.
tainties, which were estimated to be 4% @t5.75 and was supported by a Grant-in-Aid of the Ministry of Educa-
smaller for largers. In total, there is 6% ambiguity g8  tion No. 12640279. T.U. was supported by the center-of-
=5.75, which corresponds to our coarsest lattice, and 2—3 %xcellence(COE) program at CCP, Tsukuba University.
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