39 research outputs found

    The Dilemma and Prospects of Academic Misconduct in Digital Forensics--A Case Study to Wan\u27s Improved Scheme

    Get PDF
    In 2019, Wan, Liao, Yan and Tsai proposed an article ``Discrete Sliding Mode Control for Chaos Synchronization and Its Application to an Improved ElGamal Cryptosystem\u27\u27. However, Wan et al. just renamed the variable names without modified the core algorithm. Their paper passed review phase and then published. For this case, it is difficult to detect this situation by computer/digital forensics techniques. In this paper the authors would like to point out this dilemmas

    A Novel Mathematical Formal Proof in Unreliability Protocol with XOR in Two\u27s Complement System

    Get PDF
    Exclusive OR (XOR), a common Boolean logical operation, is an operation on two factors where the result is true if and only if one operand is true and the other is false. A simple way to state this is ``one or the other, but not both\u27\u27. Using this logical operation, a text string can be encrypted by applying the XOR operator to every character using a ``key\u27\u27. If you want to decrypt the output, simply reapply the key and the resulting output will be the original message

    Comment on Enhanced DNA and ElGamal cryptosystem for secure data storage and retrieval in cloud

    Get PDF
    Thangavel and Varalakshmi proposed an enhanced DNA and ElGamal cryptosystem for secure data storage and retrieval in cloud. They modified ElGamal algorithm which it calls enhanced ElGamal cryptosystem. We prove that their enhanced ElGamal scheme, which does not require two random numbers by data owner. Although the attacker is unable to find out what message the data owner gave to the data user. However, the attackers can still confuse the issue of sending messages to data users. On the other hand, this scheme can not against insider attack, therefore it is insecure

    Innovative Strategies to Fuel Organic Food Business Growth: A Qualitative Research.

    Get PDF
    This study aimed to identify the factors affecting consumer behavior and customer loyalty toward organic food. Whether consumers seek organic food for a healthy body or more as food for thought continues to be debated. However, since consumers' purchase habits are based on their honest life experiences, which shape the building of a brand, this study reviewed the extant literature to understand the factors influencing the purchasing behavior for organic food. The follow-up problems highlighted in the research are related to organic business marketing strategy. Based on our methodology, we conducted semi-structured interviews to gain themes for qualitative research. The study found that availability, variety, and taste were the top three factors affecting consumers' purchase decisions; surprisingly, neither price nor health-consciousness was the first concern. Using market-led innovation as an innovative lens to understand customer loyalty, this research highlights sustainable and advantageous business practices in the organic food market to enrich the literature on organic food purchasing behavior from multiple stakeholders

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P &lt; 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.</p

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore