70 research outputs found

    Vesicular Egress of Non-Enveloped Lytic Parvoviruses Depends on Gelsolin Functioning

    Get PDF
    The autonomous parvovirus Minute Virus of Mice (MVM) induces specific changes in the cytoskeleton filaments of infected permissive cells, causing in particular the degradation of actin fibers and the generation of “actin patches.” This is attributed to a virus-induced imbalance between the polymerization factor N-WASP (Wiscott-Aldrich syndrome protein) and gelsolin, a multifunctional protein cleaving actin filaments. Here, the focus is on the involvement of gelsolin in parvovirus propagation and virus-induced actin processing. Gelsolin activity was knocked-down, and consequences thereof were determined for virus replication and egress and for actin network integrity. Though not required for virus replication or progeny particle assembly, gelsolin was found to control MVM (and related H1-PV) transport from the nucleus to the cell periphery and release into the culture medium. Gelsolin-dependent actin degradation and progeny virus release were both controlled by (NS1)/CKIIα, a recently identified complex between a cellular protein kinase and a MVM non-structural protein. Furthermore, the export of newly synthesized virions through the cytoplasm appeared to be mediated by (virus-modified) lysomal/late endosomal vesicles. By showing that MVM release, like entry, is guided by the cytoskeleton and mediated by vesicles, these results challenge the current view that egress of non-enveloped lytic viruses is a passive process

    Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the <it>FGFR2 </it>gene has been identified in a number of cancer sites. Overexpression of the <it>FGFR4 </it>protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the <it>FGFR2 </it>and <it>FGFR4 </it>genes and development of various cancers.</p> <p>Methods</p> <p>We evaluated the associations of four genetic variants in the <it>FGFR2 </it>gene highly related to breast cancer risk and the three common tag-SNPs in the <it>FGFR4 </it>gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls.</p> <p>Results</p> <p>We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer.</p> <p>Conclusion</p> <p>Given the power of this study, we did not detect any contribution of genetic variants in the <it>FGFR2 </it>or <it>FGFR4 </it>genes to inherited predisposition to skin cancer among Caucasian women.</p

    Metabolic Regulation of Invadopodia and Invasion by Acetyl-CoA Carboxylase 1 and De novo Lipogenesis

    Get PDF
    Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis

    Matricellular Proteins Produced by Melanocytes and Melanomas: In Search for Functions

    Get PDF
    Matricellular proteins are modulators of cell-matrix interactions and cellular functions. The group includes thrombospondin, osteopontin, osteonectin/SPARC, tenascin, disintegrins, galectins and CCN proteins. The production of matricellular proteins such as osteopontin, SPARC or tenascin is highly upregulated in melanoma and other tumors but little is known about their functions in tumor growth, survival, and metastasis. The distribution pattern of CCN3 differs from most other matricellular proteins, such that it is produced abundantly by normal melanocytes, but is not significantly expressed in melanoma cells. CCN3 is known to inhibit melanocyte proliferation and stimulate adhesion to collagen type IV, the main component of the basement membrane. CCN3 has a unique role in securing adhesion of melanocytes to the basement membrane distinct from other melanoma-produced matricellular proteins which act as de-adhesive molecules and antagonists of focal adhesion. Qualitative and quantitative changes in matricellular protein expression contribute to melanoma progression similar to the E-cadherin to N-cadherin class switch, allowing melanoma cells to escape from keratinocyte control

    Co-producing a Research Agenda for Sustainable Palm Oil

    Get PDF
    The rise of palm oil as the world’s most consumed vegetable oil has coincided with exponential growth in palm oil research activity. Bibliometric analysis of research outputs reveals a distinct imbalance in the type of research being undertaken, notably a disproportionate focus on biofuel and engineering topics. Recognizing the expansion of oil palm agriculture across the tropics and the increasing awareness of environmental, social, and economic impacts, we seek to reorientate the existing research agenda toward one that addresses the most fundamental and urgent questions defined by the palm oil stakeholder community. Following consultation with 659 stakeholders from 38 countries, including palm oil growers, government agencies, non-governmental organizations, and researchers, the highest priority research questions were identified within 13 themes. The resulting 279 questions, including 26 ranked as top priority, reveal a diversity of environmental and social research challenges facing the industry, ranging from the ecological and ecosystem impacts of production, to the livelihoods of plantation workers and smallholder communities. Analysis of the knowledge type produced from these questions underscores a clear need for fundamental science programmes, and studies that involve the consultation of non-academic stakeholders to develop “transformative” solutions to the oil palm sector. Stakeholders were most aligned in their choice of priority questions across the themes of policy and certification related themes, and differed the most in environmental feedback, technology and smallholder related themes. Our recommendations include improved regional academic leadership and coordination, greater engagement with private and public stakeholders in Africa, and Central and South America, and enhanced collaborative efforts with researchers in the major consuming countries of India and China.The online survey and focus groups were funded by the Geran Kursi Endowmen MPOB-UKM Malaysia, and the Royal Geographical Society UK. The residential workshop was supported from by British Council and Academy Science Malaysia via the UK Newton Ungku-Omar Fund. ZD, JB, and MS are supported by the UK Natural Environment Research Council (NE/K016407/1; http://lombok.nerc-hmtf.info/)

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers

    Full text link

    The environmental impacts of palm oil in context

    Get PDF
    Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils, and in particular palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for 40% of the current global annual demand for vegetable oil as food, animal feed, and fuel (210 million tons (Mt)), but planted oil palm covers less than 5-5.5% of total global oil crop area (ca. 425 Mha), due to oil palm’s relatively high yields5. Recent oil palm expansion in forested regions of Borneo, Sumatra, and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm’s role in deforestation. Oil palm expansion’s direct contribution to regional tropical deforestation varies widely, ranging from 3% in West Africa to 47% in Malaysia. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions, and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops, and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 20509. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation, and livelihoods. Our review highlights that, although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. 65 Greater research attention needs to be given to investigating the impacts of palm oil production 66 compared to alternatives for the trade-offs to be assessed at a global scale
    corecore