186 research outputs found
Maximum Edge-Disjoint Paths in -sums of Graphs
We consider the approximability of the maximum edge-disjoint paths problem
(MEDP) in undirected graphs, and in particular, the integrality gap of the
natural multicommodity flow based relaxation for it. The integrality gap is
known to be even for planar graphs due to a simple
topological obstruction and a major focus, following earlier work, has been
understanding the gap if some constant congestion is allowed.
In this context, it is natural to ask for which classes of graphs does a
constant-factor constant-congestion property hold. It is easy to deduce that
for given constant bounds on the approximation and congestion, the class of
"nice" graphs is nor-closed. Is the converse true? Does every proper
minor-closed family of graphs exhibit a constant factor, constant congestion
bound relative to the LP relaxation? We conjecture that the answer is yes.
One stumbling block has been that such bounds were not known for bounded
treewidth graphs (or even treewidth 3). In this paper we give a polytime
algorithm which takes a fractional routing solution in a graph of bounded
treewidth and is able to integrally route a constant fraction of the LP
solution's value. Note that we do not incur any edge congestion. Previously
this was not known even for series parallel graphs which have treewidth 2. The
algorithm is based on a more general argument that applies to -sums of
graphs in some graph family, as long as the graph family has a constant factor,
constant congestion bound. We then use this to show that such bounds hold for
the class of -sums of bounded genus graphs
Capacitated Vehicle Routing with Non-Uniform Speeds
The capacitated vehicle routing problem (CVRP) involves distributing
(identical) items from a depot to a set of demand locations, using a single
capacitated vehicle. We study a generalization of this problem to the setting
of multiple vehicles having non-uniform speeds (that we call Heterogenous
CVRP), and present a constant-factor approximation algorithm.
The technical heart of our result lies in achieving a constant approximation
to the following TSP variant (called Heterogenous TSP). Given a metric denoting
distances between vertices, a depot r containing k vehicles with possibly
different speeds, the goal is to find a tour for each vehicle (starting and
ending at r), so that every vertex is covered in some tour and the maximum
completion time is minimized. This problem is precisely Heterogenous CVRP when
vehicles are uncapacitated.
The presence of non-uniform speeds introduces difficulties for employing
standard tour-splitting techniques. In order to get a better understanding of
this technique in our context, we appeal to ideas from the 2-approximation for
scheduling in parallel machine of Lenstra et al.. This motivates the
introduction of a new approximate MST construction called Level-Prim, which is
related to Light Approximate Shortest-path Trees. The last component of our
algorithm involves partitioning the Level-Prim tree and matching the resulting
parts to vehicles. This decomposition is more subtle than usual since now we
need to enforce correlation between the size of the parts and their distances
to the depot
Approximation Algorithms for Connected Maximum Cut and Related Problems
An instance of the Connected Maximum Cut problem consists of an undirected
graph G = (V, E) and the goal is to find a subset of vertices S V
that maximizes the number of edges in the cut \delta(S) such that the induced
graph G[S] is connected. We present the first non-trivial \Omega(1/log n)
approximation algorithm for the connected maximum cut problem in general graphs
using novel techniques. We then extend our algorithm to an edge weighted case
and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark
contrast to the classical max-cut problem, we show that the connected maximum
cut problem remains NP-hard even on unweighted, planar graphs. On the positive
side, we obtain a polynomial time approximation scheme for the connected
maximum cut problem on planar graphs and more generally on graphs with bounded
genus.Comment: 17 pages, Conference version to appear in ESA 201
Scheduling over Scenarios on Two Machines
We consider scheduling problems over scenarios where the goal is to find a
single assignment of the jobs to the machines which performs well over all
possible scenarios. Each scenario is a subset of jobs that must be executed in
that scenario and all scenarios are given explicitly. The two objectives that
we consider are minimizing the maximum makespan over all scenarios and
minimizing the sum of the makespans of all scenarios. For both versions, we
give several approximation algorithms and lower bounds on their
approximability. With this research into optimization problems over scenarios,
we have opened a new and rich field of interesting problems.Comment: To appear in COCOON 2014. The final publication is available at
link.springer.co
Packing While Traveling: Mixed Integer Programming for a Class of Nonlinear Knapsack Problems
Packing and vehicle routing problems play an important role in the area of
supply chain management. In this paper, we introduce a non-linear knapsack
problem that occurs when packing items along a fixed route and taking into
account travel time. We investigate constrained and unconstrained versions of
the problem and show that both are NP-hard. In order to solve the problems, we
provide a pre-processing scheme as well as exact and approximate mixed integer
programming (MIP) solutions. Our experimental results show the effectiveness of
the MIP solutions and in particular point out that the approximate MIP approach
often leads to near optimal results within far less computation time than the
exact approach
Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines
We consider the problem of scheduling jobs on unrelated machines so as to
minimize the sum of weighted completion times. Our main result is a
-approximation algorithm for some fixed , improving upon the
long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM,
2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce
a new lift-and-project based SDP relaxation for the problem. This is necessary
as the previous convex programming relaxations have an integrality gap of
. Second, we give a new general bipartite-rounding procedure that produces
an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure
Approximating Node-Weighted k-MST on Planar Graphs
We study the problem of finding a minimum weight connected subgraph spanning
at least vertices on planar, node-weighted graphs. We give a
(4+\eps)-approximation algorithm for this problem. We achieve this by
utilizing the recent LMP primal-dual -approximation for the node-weighted
prize-collecting Steiner tree problem by Byrka et al (SWAT'16) and adopting an
approach by Chudak et al. (Math.\ Prog.\ '04) regarding Lagrangian relaxation
for the edge-weighted variant. In particular, we improve the procedure of
picking additional vertices (tree merging procedure) given by Sadeghian (2013)
by taking a constant number of recursive steps and utilizing the limited
guessing procedure of Arora and Karakostas (Math.\ Prog.\ '06). More generally,
our approach readily gives a (\nicefrac{4}{3}\cdot r+\eps)-approximation on
any graph class where the algorithm of Byrka et al.\ for the prize-collecting
version gives an -approximation. We argue that this can be interpreted as a
generalization of an analogous result by K\"onemann et al. (Algorithmica~'11)
for partial cover problems. Together with a lower bound construction by Mestre
(STACS'08) for partial cover this implies that our bound is essentially best
possible among algorithms that utilize an LMP algorithm for the Lagrangian
relaxation as a black box. In addition to that, we argue by a more involved
lower bound construction that even using the LMP algorithm by Byrka et al.\ in
a \emph{non-black-box} fashion could not beat the factor \nicefrac{4}{3}\cdot
r when the tree merging step relies only on the solutions output by the LMP
algorithm
- …